## NCERT Solutions for Class 11 Maths Chapter 10 Straight Lines

**NCERT Solutions for Class 11 Maths Chapter 10 Straight Lines** prepared by the Mathematics subject experts. All the important topics in Straight Lines are covered in the exercises and each answer comes with a detailed explanation to help students understand concepts better. These **Class 11 Maths NCERT solutions** play a crucial role in your preparation for all exams conducted by the CBSE, including the JEE.

**NCERT Solutions for Class 11 Maths Chapter 10 Straight Lines Exercise.10.1**

Topics and Sub Topics in Class 11 Maths Chapter 10 Straight Lines:

Section Name | Topic Name |

10 | Straight Lines |

10.1 | Introduction |

10.2 | Slope of Line |

10.3 | Various Forms of the Equation of Line |

10.4 | General Equation of Line |

10.5 | Distance of a Point From a Line |

**Question-1**

**Ans.**

LearnCBSE.in Updated Straight Lines exercise wise to make it user-friendly, check out now NCERT Solutions for Class 10 **Straight Lines Exercise 10.2, Ex 10.3 and Miscellaneous Questions**. If you face any difficulty please give us feedback in the comment section. Check it Now:

- Straight Lines Class 11 Chapter 10 Ex 10.2
- Straight Lines Class 11 Chapter 10 Ex 10.3
- Straight Lines Class 11 Chapter 10 Miscellaneous Questions

**Question-2**

**Ans.**

**More Resources for CBSE Class 11**

- NCERT Solutions
- NCERT Solutions Class 11 Maths
- NCERT Solutions Class 11 Physics
- NCERT Solutions Class 11 Chemistry
- NCERT Solutions Class 11 Biology
- NCERT Solutions Class 11 Hindi
- NCERT Solutions Class 11 English
- NCERT Solutions Class 11 Business Studies
- NCERT Solutions Class 11 Accountancy
- NCERT Solutions Class 11 Psychology
- NCERT Solutions Class 11 Entrepreneurship
- NCERT Solutions Class 11 Indian Economic Development
- NCERT Solutions Class 11 Computer Science

**Question-3**

**Ans.**

**Question-4**

**Ans.**

**Question-5**

**Ans.**

**Question-6**

**Ans.**

**Question-7**

**Ans.**

**Question-8**

**Ans.**

**Question-9**

**Ans.**

**Question-10**

**Ans.**

**Question-11**

**Ans.**

**Question-12**

**Ans.**

**Question-13**

**Ans.**

**Question-14**

**Ans.**

**NCERT Solutions for Class 11 Maths Chapter 10 ****Exercise.10.2**

**Question-1**

**Ans.**

**Question-2**

**Ans.**

**Question-3**

**Ans.**

**Question-4**

**Ans.**

**Question-5**

**Ans.**

**Question-6**

**Ans.**

**Question-7**

**Ans.**

**Question-8**

**Ans.**

**Question-9**

**Ans.**

**Question-10**

**Ans.**

**Question-11**

**Ans.**

**Question-12**

**Ans.**

**Question-13**

**Ans.**

**Question-14**

**Ans.**

**Question-15**

**Ans.**

**Question-16**

**Ans.**

**Question-17**

**Ans.**

**Question-18**

**Ans.**

**Question-19**

**Ans.**

**Question-20**

**Ans.**

**NCERT Solutions for Class 11 Maths Chapter 10 ****Exercise.10.3**

**Question-1**

**Ans.**

**Question-2**

**Ans.**

**Question-3**

**Ans.**

**Question-4**

**Ans.**

**Question-5**

**Ans.**

**Question-6**

**Ans.**

**Question-7**

**Ans.**

**Question-8**

**Ans.**

**Question-9**

**Ans.**

**Question-10**

**Ans.**

**Question-11**

**Ans.**

**Question-12**

**Ans.**

**Question-13**

**Ans.**

**Question-14**

**Ans.**

**Question-15**

**Ans.**

**Question-16**

**Ans.**

**Question-17**

**Ans.**

**Question-18**

**Ans.**

**NCERT Solutions for Class 11 Maths Chapter 10**** Miscellaneous Solutions**

**Question-1**

**Ans.**

**Question-2**

**Ans.**

**Question-3**

**Ans.**

**Question-4**

**Ans.**

**Question-5**

**Ans.**

**Question-6**

**Ans.**

**Question-7**

**Ans.**

**Question-8**

**Ans.**

**Question-9**

**Ans.**

**Question-10**

**Ans.**

**Question-11**

**Ans.**

**Question-12**

**Ans.**

**Question-13**

**Ans.**

**Question-14**

**Ans.**

**Question-15**

**Ans.**

**Question-16**

**Ans.**

**Question-17**

**Ans.**

**Question-18**

**Ans.**

**Question-19**

**Ans.**

**Question-20**

**Ans.**

**Question-21**

**Ans.**

**Question-22**

**Ans.**

**Question-23**

**Ans.**

**Question-24**

**Ans.**

**Maths NCERT Solutions Class 11 Maths Chapter 10 ****Exercise.10.1**

* **Q-1. Construct a quadrilateral in the Cartesian plane with vertices (-2, 5), (0, 6), (4, -4) and (-3, -1). Also, find the area of the quadrilateral.*

*Q-2. Consider an equilateral triangle, each of whose sides are 2b which lies on the y- axis in such a manner that, the mid- point of each of its base is at the origin. Obtain all the vertices of the equilateral triangle.*

*Q-3. What is the distance between X (a _{1}, b_{1}) and Y (a_{2}, b_{2}) if:*

*(a) XY is parallel to x- axis*

*(b) XY is parallel to y- axis*

*Q-4. Consider two points (6, 5) and (4, 2). Get a point on the y- axis which is equivalent from the given two points.*

*Q-5. What is the slope of a line passing through the origin and, the mid- point of the line- segment joining the two points O (0, -5) and A (9, 0)?*

*Q-6. Prove that the points (5, 5), (4, 6) and (-2, -2) are the vertices of the right- angled triangle, without using Pythagoras theorem.*

*Q-7. What is the slope of the line which makes an angle 60∘ along the positive direction of the Y- axis which is measured in anticlockwise sequence.*

*Q-8. What will be the value of a so that the points (a, -2), (3, 2) and (5, 6) get collinear to each other?*

*Q-9. Prove that the points (-3, -2), (5, 0), (4, 4) and (-4, 2) are the vertices of a parallelogram without using the distance formula.*

*Q-10. Consider two points (4, -2) and (5, -3). What is the angle between the x- axis and the line joining the given two points?*

*Q-12. Consider a line passing through two points (a _{1}, b_{1}) and (j, k). Assume that the slope of the line passing through these points is m. Prove that:*

*k – b _{1} = m (j – a_{1}).*

*Q-14. Take the records of population and year graph given below. What will be the slope of the line XY? By using this, find the population in the year 2005.*

Rishabh jain says

Nice

Shaaista Hasan says

The solutions are pretty helpful and are a great guide…. But I would like to have more than one solution to an answer as it guides us to go about the question in a different perspective