• NCERT Solutions
    • NCERT Library
  • RD Sharma
    • RD Sharma Class 12 Solutions
    • RD Sharma Class 11 Solutions Free PDF Download
    • RD Sharma Class 10 Solutions
    • RD Sharma Class 9 Solutions
    • RD Sharma Class 8 Solutions
    • RD Sharma Class 7 Solutions
    • RD Sharma Class 6 Solutions
  • Class 12
    • Class 12 Science
      • NCERT Solutions for Class 12 Maths
      • NCERT Solutions for Class 12 Physics
      • NCERT Solutions for Class 12 Chemistry
      • NCERT Solutions for Class 12 Biology
      • NCERT Solutions for Class 12 Economics
      • NCERT Solutions for Class 12 Computer Science (Python)
      • NCERT Solutions for Class 12 Computer Science (C++)
      • NCERT Solutions for Class 12 English
      • NCERT Solutions for Class 12 Hindi
    • Class 12 Commerce
      • NCERT Solutions for Class 12 Maths
      • NCERT Solutions for Class 12 Business Studies
      • NCERT Solutions for Class 12 Accountancy
      • NCERT Solutions for Class 12 Micro Economics
      • NCERT Solutions for Class 12 Macro Economics
      • NCERT Solutions for Class 12 Entrepreneurship
    • Class 12 Humanities
      • NCERT Solutions for Class 12 History
      • NCERT Solutions for Class 12 Political Science
      • NCERT Solutions for Class 12 Economics
      • NCERT Solutions for Class 12 Sociology
      • NCERT Solutions for Class 12 Psychology
  • Class 11
    • Class 11 Science
      • NCERT Solutions for Class 11 Maths
      • NCERT Solutions for Class 11 Physics
      • NCERT Solutions for Class 11 Chemistry
      • NCERT Solutions for Class 11 Biology
      • NCERT Solutions for Class 11 Economics
      • NCERT Solutions for Class 11 Computer Science (Python)
      • NCERT Solutions for Class 11 English
      • NCERT Solutions for Class 11 Hindi
    • Class 11 Commerce
      • NCERT Solutions for Class 11 Maths
      • NCERT Solutions for Class 11 Business Studies
      • NCERT Solutions for Class 11 Accountancy
      • NCERT Solutions for Class 11 Economics
      • NCERT Solutions for Class 11 Entrepreneurship
    • Class 11 Humanities
      • NCERT Solutions for Class 11 Psychology
      • NCERT Solutions for Class 11 Political Science
      • NCERT Solutions for Class 11 Economics
      • NCERT Solutions for Class 11 Indian Economic Development
  • Class 10
    • NCERT Solutions for Class 10 Maths
    • NCERT Solutions for Class 10 Science
    • NCERT Solutions for Class 10 Social Science
    • NCERT Solutions for Class 10 English
    • NCERT Solutions For Class 10 Hindi Sanchayan
    • NCERT Solutions For Class 10 Hindi Sparsh
    • NCERT Solutions For Class 10 Hindi Kshitiz
    • NCERT Solutions For Class 10 Hindi Kritika
    • NCERT Solutions for Class 10 Sanskrit
    • NCERT Solutions for Class 10 Foundation of Information Technology
  • Class 9
    • NCERT Solutions for Class 9 Maths
    • NCERT Solutions for Class 9 Science
    • NCERT Solutions for Class 9 Social Science
    • NCERT Solutions for Class 9 English
    • NCERT Solutions for Class 9 Hindi
    • NCERT Solutions for Class 9 Sanskrit
    • NCERT Solutions for Class 9 Foundation of IT
  • CBSE Sample Papers
    • Previous Year Question Papers
    • CBSE Topper Answer Sheet
    • CBSE Sample Papers for Class 12
    • CBSE Sample Papers for Class 11
    • CBSE Sample Papers for Class 10
    • CBSE Sample Papers for Class 9
    • CBSE Sample Papers Class 8
    • CBSE Sample Papers Class 7
    • CBSE Sample Papers Class 6
  • Textbook Solutions
    • Lakhmir Singh
    • Lakhmir Singh Class 10 Physics
    • Lakhmir Singh Class 10 Chemistry
    • Lakhmir Singh Class 10 Biology
    • Lakhmir Singh Class 9 Physics
    • Lakhmir Singh Class 9 Chemistry
    • PS Verma and VK Agarwal Biology Class 9 Solutions
    • Lakhmir Singh Science Class 8 Solutions

Learn CBSE

NCERT Solutions for Class 6, 7, 8, 9, 10, 11 and 12

Rational Numbers | Definition, Types, Properties, Standard Form of Rational Numbers

November 3, 2020 by Veerendra

In Maths, Rational Numbers sound similar to Fractions and they are expressed in the form of p/q where q is not equal to zero. Any fraction that has non zero denominators is called a Rational Number. Thus, we can say 0 also a rational number as we can express it in the form of 0/1, 0/2 0/3, etc. However, 1/0, 2/0 aren’t rational numbers as they give infinite values.

Continue reading further modules to learn completely about Rational Numbers. Get to know about Types of Rational Numbers, Difference Between Rational and Irrational Numbers, Solved Examples, and learn how to Identify Rational Numbers, etc. In order to represent Rational Numbers on a Number Line firstly change them into decimal values.

Definition of Rational Number

Rational Number in Mathematics is defined as any number that can be represented in the form of p/q where q ≠ 0. On the other hand, we can also say that any fraction fits into the category of Rational Numbers if bot p, q are integers and the denominator is not equal to zero.

  • Rational Numbers Worksheets
  • Class 8 Rational Numbers NCERT Solutions
  • Rational Numbers Class 8 Extra Questions
  • Rational Numbers Class 8 Notes
  • NCERT Exemplar Class 8 Maths Rational Numbers
  • Class 7 Rational Numbers NCERT Solutions
  • Rational Numbers Class 7 Extra Questions
  • Rational Numbers Class 7 Notes
  • Introduction to Rational Numbers
  • What are Rational Numbers?
  • Is Every Rational Number a Natural Number?
  • Is Zero a Rational Number?
  • Is Every Rational Number an Integer?
  • Is Every Rational Number a Fraction?
  • Positive Rational Number
  • Negative Rational Number
  • Equivalent Rational Numbers
  • Equivalent Form of Rational Numbers
  • Rational Numbers in Different Forms
  • Properties of Rational Numbers
  • Lowest Form of a Rational Number
  • Standard Form of a Rational Number
  • Equality of Rational Numbers using Standard Form
  • Equality of Rational Numbers with Common Denominator
  • Equality of Rational Numbers using Cross Multiplication
  • Comparison of Rational Numbers
  • Rational Numbers in Ascending Order
  • Rational Numbers in Descending Order
  • Representation of Rational Numbers on the Number Line
  • Rational Numbers on the Number Line
  • Addition of Rational Numbers with Same Denominator
  • Addition of Rational Numbers with Different Denominator
  • Addition of Rational Numbers
  • Properties of Addition of Rational Numbers
  • Subtraction of Rational Numbers with Same Denominator
  • Subtraction of Rational Numbers with Different Denominator
  • Subtraction of Rational Numbers
  • Properties of Subtraction of Rational Numbers
  • Rational Expressions Involving Addition and Subtraction
  • Simplify Rational Expressions Involving the Sum or Difference
  • Multiplication of Rational Numbers
  • Product of Rational Numbers
  • Properties of Multiplication of Rational Numbers
  • Rational Expressions Involving Addition, Subtraction, and Multiplication
  • Reciprocal of a Rational Number
  • Division of Rational Numbers
  • Rational Expressions Involving Division
  • Properties of Division of Rational Numbers
  • Rational Numbers between Two Rational Numbers
  • How to Find Rational Numbers?

How to Identify Rational Numbers?

You need to check the following conditions to know whether a number is rational or not. They are as follows

  • It should be represented in the form of p/q, where q ≠ 0.
  • Ratio p/q can be further simplified and expressed in the form of a decimal value.

The set of Rational Numerals include positive, negative numbers, and zero. It can be expressed as a Fraction.

Examples of Rational Numbers

p q p/q Rational
20 4 20/4 =5 Rational
2 2000 2/2000 = 0.001 Rational
100 10 100/10 = 10 Rational

Types of Rational Numbers

You can better understand the concept of sets by having a glance at the below diagram.

Rational Numbers

  • Real numbers (R) include All the rational numbers (Q).
  • Real numbers include the Integers (Z).
  • Integers involve Natural Numbers(N).
  • Every whole number is a rational number as every whole number can be expressed in terms of a fraction.

Standard Form of Rational Numbers

A Rational Number is said to be in its standard form if the common factors between divisor and dividend is only one and therefore the divisor is positive.

For Example, 12/24 is a rational number. It can be simplified further into 1/2. As the Common Factors between divisor and dividend is one the rational number 1/2 is said to be in its standard form.

Positive and Negative Rational Numbers

Positive Rational Numbers Negative Rational Numbers
If both the numerator and denominator are of the same signs. If numerator and denominator are of opposite signs.
All are greater than 0 All are less than 0
Example: 12/7, 9/10, and 3/4 are positive rational numbers Example: -2/13, 7/-11, and -1/4 are negative rational numbers

Arithmetic Operations on Rational Numbers

Let us discuss how to perform basic operations i.e. Arithmetic Operations on Rational Numbers. Consider p/q, s/t as two rational numbers.

Addition: Whenever we add two rational numbers p/q, s/t we need to make the denominator the same. Thus, we get (pt+qs)/qt.

Ex: 1/3+3/4 = (4+3)/12 = 7/12

Subtraction: When it comes to subtraction between rational numbers p/q, s/t we need to make the denominator the same and then subtract.

Ex: 1/2-4/3 = (3-8)/6 = -5/6

Multiplication: While Multiplying Rational Numbers p/q, s/t simply multiply the numerators and the denominators of the rational numbers respectively. On multiplying p/q with s/t then we get (p*s)/(q*t)

Ex: 1/3*4/2=4/6

Division: Division of p/q & s/t is represented as (p/q)÷(s/t) = pt/qs

Ex: 1/4÷4/3 =1*3/4*4 = 3/16

Properties of Rational Numbers

  • If we add a zero to a Rational Number you will get the Rational Number Itself.
  • Addition, Subtraction, Multiplication of a Rational Number yields in a Rational Number.
  • Rational Number remains the same on multiplying or dividing both the numerator and denominator with the same factor.

There are few other properties of rational numbers and they are given as under

  • Closure Property
  • Commutative Property
  • Associative Property
  • Distributive Property
  • Identity Property
  • Inverse Property

Representation of Rational Numbers on a Number Line

Number Line is a straight line diagram on which each and every point corresponds to a real number. As Rational Numbers are Real Numbers they have a specific location on the number line.

Rational Numbers Vs Irrational Numbers

There is a difference between Rational Numbers and Irrational Numbers. Fractions with non zero denominators are called Rational Numbers. All the numbers that are not Rational are Called Irrational Numbers. Rational Numbers can be Positive, Negative, or Zero. To specify a negative Rational Number negative sign is placed in front of the numerator.

When it comes to Irrational Numbers you can’t write them as simple fractions but can represent them with a decimal. You will endless non-repeating digits after the decimal point.

Pi (π) = 3.142857…

√2 = 1.414213…

Solved Examples

Example 1.

Identify whether Mixed Fraction 1 3/4 is a Rational Number or Not?

Solution: The Simplest Form of Mixed Number 1 3/4 is 7/4

Numerator = 7 which is an integer

Denominator = 4 which is an integer and not equal to 0.

Thus, 7/4 is a Rational Number.

Example 2.

Determine whether the given numbers are rational or irrational?

(a) 1.45 (b) 0.001 (c) 0.15 (d) 0.9 (d) √3

Solution:

Given Numbers are in Decimal Format and to find out whether they are rational or not we need to change them into fraction format i.e. p/q. If the denominator is non zero then the number is rational or else irrational.

Decimal Number Fraction Rational Number
1.45 29/20 Yes
0.001 1/1000 Yes
0.15 3/20 Yes
0.9 9/10 Yes
√ 3 1.732… No

FAQs on Rational Numbers

1. How to Identify a Rational Number?

If the Number is expressed in the form of p/q where p, q are integers and q is non zero then it called a Rational Number.

2. Is 5 a Rational Number?

Yes, 5 is a Rational Number as it can be expressed in the form of 5/1.

3. What do we get on adding zero to a Rational Number?

On Adding Zero to a Rational Number, you will get the Same Rational Number.

4. What is the difference between Rational and Irrational Numbers?

Rational Numbers are terminating decimals whereas Irrational Numbers are Non-Terminating Decimals.

 

Filed Under: Mathematics

LearnCBSE Sample Papers
  • Words by Length
  • NEET MCQ
  • Factoring Calculator
  • Rational Numbers
  • CGPA Calculator
  • TOP Universities in India
  • TOP Engineering Colleges in India
  • TOP Pharmacy Colleges in India
  • Coding for Kids
  • Math Riddles for Kids with Answers
  • General Knowledge for Kids
  • General Knowledge
  • Scholarships for Students
  • NSP - National Scholarip Portal
  • Class 12 Maths NCERT Solutions
  • Class 11 Maths NCERT Solutions
  • NCERT Solutions for Class 10 Maths
  • NCERT Solutions for Class 9 Maths
  • NCERT Solutions for Class 8 Maths
  • NCERT Solutions for Class 7 Maths
  • NCERT Solutions for Class 6 Maths
  • NCERT Solutions for Class 6 Science
  • NCERT Solutions for Class 7 Science
  • NCERT Solutions for Class 8 Science
  • NCERT Solutions for Class 9 Science
  • NCERT Solutions for Class 10 Science
  • NCERT Solutions for Class 11 Physics
  • NCERT Solutions for Class 11 Chemistry
  • NCERT Solutions for Class 12 Physics
  • NCERT Solutions for Class 12 Chemistry
  • NCERT Solutions for Class 10 Science Chapter 1
  • NCERT Solutions for Class 10 Science Chapter 2
  • Metals and Nonmetals Class 10
  • carbon and its compounds class 10
  • Periodic Classification of Elements Class 10
  • Life Process Class 10
  • NCERT Solutions for Class 10 Science Chapter 7
  • NCERT Solutions for Class 10 Science Chapter 8
  • NCERT Solutions for Class 10 Science Chapter 9
  • NCERT Solutions for Class 10 Science Chapter 10
  • NCERT Solutions for Class 10 Science Chapter 11
  • NCERT Solutions for Class 10 Science Chapter 12
  • NCERT Solutions for Class 10 Science Chapter 13
  • NCERT Solutions for Class 10 Science Chapter 14
  • NCERT Solutions for Class 10 Science Chapter 15
  • NCERT Solutions for Class 10 Science Chapter 16

Free Resources

RD Sharma Class 12 Solutions RD Sharma Class 11
RD Sharma Class 10 RD Sharma Class 9
RD Sharma Class 8 RD Sharma Class 7
CBSE Previous Year Question Papers Class 12 CBSE Previous Year Question Papers Class 10
NCERT Books Maths Formulas
CBSE Sample Papers Vedic Maths
NCERT Library

 

NCERT Solutions

NCERT Solutions for Class 10
NCERT Solutions for Class 9
NCERT Solutions for Class 8
NCERT Solutions for Class 7
NCERT Solutions for Class 6
NCERT Solutions for Class 5
NCERT Solutions for Class 4
NCERT Solutions for Class 3
NCERT Solutions for Class 2
NCERT Solutions for Class 1

Quick Resources

English Grammar Hindi Grammar
Textbook Solutions Maths NCERT Solutions
Science NCERT Solutions Social Science NCERT Solutions
English Solutions Hindi NCERT Solutions
NCERT Exemplar Problems Engineering Entrance Exams
Like us on Facebook Follow us on Twitter
Watch Youtube Videos NCERT Solutions App