CBSE Class 11 Maths Notes Chapter 4 Principle of Mathematical Induction
Principle of Mathematical Induction
Mathematical induction is one of the techniques, which can be used to prove a variety of mathematical statements which are formulated in terms of n, where n is a positive integer.
Let P(n) be given statement involving the natural number n such that
(i) The statement is true for n = 1, i.e. P(1) is true.
(ii) If the statement is true for n = k (where k is a particular but arbitrary natural number), then the statement is also true for n = k + 1 i.e. truth of P(k) implies that the truth of P(k + 1). Then, P(n) is true for all natural numbers n.
CBSE Class 11 Maths Notes Chapterwise
- Chapter 1 Sets Class 11 Notes
- Chapter 2 Relations and Functions Class 11 Notes
- Chapter 3 Trigonometric Functions Class 11 Notes
- Chapter 4 Principle of Mathematical Induction Class 11 Notes
- Chapter 5 Complex Numbers and Quadratic Equations Class 11 Notes
- Chapter 6 Linear Inequalities Class 11 Notes
- Chapter 7 Permutations and Combinations Class 11 Notes
- Chapter 8 Binomial Theorem Class 11 Notes
- Chapter 9 Sequences and Series Class 11 Notes
- Chapter 10 Straight Lines Class 11 Notes
- Chapter 11 Conic Sections Class 11 Notes
- Chapter 12 Introduction to Three Dimensional Geometry Class 11 Notes
- Chapter 13 Limits and Derivatives Class 11 Notes
- Chapter 14 Mathematical Reasoning Class 11 Notes
- Chapter 15 Statistics Class 11 Notes
- Chapter 16 Probability Class 11 Notes