## NCERT Solutions for Class 7 Maths Chapter 1 Integers Ex 1.4

- Class 7 Maths Integers Exercise 1.1
- Class 7 Maths Integers Exercise 1.2
- Class 7 Maths Integers Exercise 1.3
- Class 7 Maths Integers Exercise 1.4

**NCERT Solutions for Class 7 Maths Chapter 1 Integers Exercise 1.4**

Ex 1.4 Class 7 Maths Question 1.

Evaluate each of the following:

(a) (-30) ÷ 10

(b) 50 ÷ (-5)

(c) (-36) ÷ (-9)

(d) (-49) ÷ (49)

(e) 13 ÷ [(-2) + 1]

(f) 0 ÷ (-12)

(g) (-31) ÷ [(-30) + (-1)]

(h) [(-36) ÷ 12] ÷ 3

(i) [(-6) + 5] ÷ [(-2) + 1]

Solution:

(a) (-30) ÷ 10 = = -3 50

(b) 50 ÷ (-5) = = -10

(c) (-36) ÷ (-9) = = 4

(d) (-49) ÷ (49) = = -1

(e) 13 ÷ [(-2) + 1] = 13 ÷ -1 = = -13

(f) 0 ÷ (-12) = = 0

(g) (-31) ÷ [(-30) + (-1)] = (-31) ÷ (-31) = = 1

(h) [(-36) + 12] ÷ 3 = ÷ 3 = -3 ÷ 3

= =-1

(i) [(-6) + 5] + [(-2) + 1] = (-1) – (-1) = = 1

Ex 1.4 Class 7 Maths Question 2.

Verify that: a ÷ (b + c) ≠ (a ÷ b) + (a ÷ c) for each of the following values of a, b and c.

(а) a = 12, b = – 4, c = 2

(b) a = (-10), b = 1, c = 1

Solution:

(a) a = 12, 6 = – 4, c = 2

a ÷ (b + c) = 12 ÷ [(-4) + 2]

= 12 ÷ (-2) = = -6

(a ÷ b) + (a ÷ c) = [12 ÷ (-4)] + [12 ÷ 2]

Since, (-6) + 3

Hence, a ÷ (b + c) + (a ÷ b) + (a ÷ c)

(b) a = (-10), b = 1, c = 1

a ÷ (b + c) = (-10) ÷ (1 + 1)

=(-10) ÷ 2 = = -5

(a ÷ b) + (a ÷ c)

=[(-10) ÷ 1] + [(-10) ÷ 1]

= (-10) + (-10) = -20

Since (-5) ≠ (-20)

Hence, a ÷ (b + c) ≠ (a ÷ b) + (a ÷ c)

Ex 1.4 Class 7 Maths Question 3.

Fill in the blanks:

(a) 369 ÷ ___ = 369

(b) (-75) ÷ ___ = -1

(c) (-206) ÷ ___ =1

(d) -87 ÷ ___ = -87

(e) ___ ÷ 1 = -87

(g) 20 ÷ ___ = -2

Solution:

(a) 369 ÷ ___ = 369 = 369 ÷ 1 = 369

(b) (-75) ÷ ___ = -1 = (-75) ÷ 75 = -1

(c) (-206) ÷ ___ = 1 = (-206) ÷ (-206) = 1

(d) 87 ÷ ___ = 87 = -87 ÷ (-1) = 87

(e) ___ ÷ 1 = -87 = -87 ÷ 1 = -87

(f) ___ ÷ 48 = -1 = (-48) ÷ 48 = -1

(g) 20 + ___ = -2 = 20 ÷ (-10) = -2

(h) ___ + (4) = -3 = (-12) ÷ (4) = -3

Ex 1.4 Class 7 Maths Question 4.

Write five pairs of integers (a, b) such that a ÷ b = -3. One such pair is (6, -2) because 6 + (-2) = -3.

Solution:

(a) (24, -8) because 24 ÷ (-8) = -3

(b) (-12, 4) because (-12) ÷ 4 = -3

(c) (15, -5) because 15 ÷ (-5) = -3

(d) (18, -6) because 18 ÷ (-6) = -3

(e) (60, -20) because 60 ÷ (-20) = -3

Ex 1.4 Class 7 Maths Question 5.

The temperature at 12 noon was 10°C above zero. If it decreases at the rate of 2°C per hour until midnight, at what time would the temperature be 8°C below zero? What would be the temperature at midnight?

Solution:

Temperature at 12 noon was 10°C above zero i.e. +10°C

Rate of decrease in temperature per hour = 2°C

Number of hours from 12 noon to midnight = 12

∴ Change in temperature in 12 hours

= 12 × (-2°C) = -24°C

∴ Temperature at midnight

= +10°C + (-24°C) = -14°C

Hence, the required temperature at midnight =-14°C

Difference in temperature between + 10°C and -8°C

= +10°C – (-8°C) = +10°C + 8°C = 18°C

Number of hours required = = 9 hours

∴ Time after 9 hours from 12 noon = 9 pm.

Ex 1.4 Class 7 Maths Question 6.

In a class test (+3) marks are given for every correct answer and (-2) marks are given for every incorrect answer and no marks for not attempting any question:

(i) Radhika scored 20 marks. If she has got 12 correct answers, how many questions has she attempted incorrectly?

(ii) Mohini scores -5 marks in this test, though she has got 7 correct answers. How many questions has she attempted incorrectly?

Solution:

Given that:

+3 marks are given for each correct answer. (-2) marks are given for each incorrect answer. Zero marks for not attempted questions.

(i) Marks obtained by Radhika for 12 correct answers = (+3) × 12 = 36

Marks obtained by Radhika for correct answers = 12 × 3 = 36

Total marks obtained by Radhika = 20

∴ Marks obtained by Radhika for incorrect answers = 20 – 36 = -16

Number of incorrect answers

Hence, the required number of incorrect answers = 8

(ii) Marks scored by Mohini = -5

Number of correct answers = 7

∴ Marks obtained by Mohini for 7 correct answers = 7 × (+3) – 21

Marks obtained for incorrect answers

= -5 – 21 = (-26)

∴ Number of incorrect answers

= (-26) ÷ (-2) = 13

Hence, the required number of incorrect answers – 13.

Ex 1.4 Class 7 Maths Question 7.

An elevator descends into a nine shaft at the rate of 6 m/min. If the descent starts from 10 m above the ground level, how long will it take to reach -350 m.

Solution:

The present position of the elevator is at 10 in above the ground level.

Distance moved by the elevator below the ground level = 350 m

∴ Total distance moved by the elevator = 350 m + 10 m = 360 m

Rate of descent = 6 m/min.

Total time taken by the elevator

= 60 minutes = 1 hour

Hence, the required time = 1 hour.

NCERT SolutionsMathsScienceSocialEnglishSanskritHindiRD Sharma

meera ann jacob says

it was really helpful for me.

Anjali says

Nice site

sairaj says

was very useful to me

Tejan dagar dhatir says

Amazing and useful..

Vanshika says

Thanks…

Neeta says

Need guidance on the following sum..

The average temperature on Saturn is 288 degree F, while that on Jupiter is 162 degree F,

Which planet has the lower average temperature?

keerthanas says

thank you

sanjay kumar chauhan says

good good

Vijay kumat says

Super

Aradhana swain says

I like the site very much . It is very useful to me very nice thanks

Shrinivas says

Very useful thank you very much!!!!!!!!

Rakesh says

Super

Trisha says

Thanks for the help