• NCERT Solutions
    • NCERT Library
  • RD Sharma
    • RD Sharma Class 12 Solutions
    • RD Sharma Class 11 Solutions Free PDF Download
    • RD Sharma Class 10 Solutions
    • RD Sharma Class 9 Solutions
    • RD Sharma Class 8 Solutions
    • RD Sharma Class 7 Solutions
    • RD Sharma Class 6 Solutions
  • Class 12
    • Class 12 Science
      • NCERT Solutions for Class 12 Maths
      • NCERT Solutions for Class 12 Physics
      • NCERT Solutions for Class 12 Chemistry
      • NCERT Solutions for Class 12 Biology
      • NCERT Solutions for Class 12 Economics
      • NCERT Solutions for Class 12 Computer Science (Python)
      • NCERT Solutions for Class 12 Computer Science (C++)
      • NCERT Solutions for Class 12 English
      • NCERT Solutions for Class 12 Hindi
    • Class 12 Commerce
      • NCERT Solutions for Class 12 Maths
      • NCERT Solutions for Class 12 Business Studies
      • NCERT Solutions for Class 12 Accountancy
      • NCERT Solutions for Class 12 Micro Economics
      • NCERT Solutions for Class 12 Macro Economics
      • NCERT Solutions for Class 12 Entrepreneurship
    • Class 12 Humanities
      • NCERT Solutions for Class 12 History
      • NCERT Solutions for Class 12 Political Science
      • NCERT Solutions for Class 12 Economics
      • NCERT Solutions for Class 12 Sociology
      • NCERT Solutions for Class 12 Psychology
  • Class 11
    • Class 11 Science
      • NCERT Solutions for Class 11 Maths
      • NCERT Solutions for Class 11 Physics
      • NCERT Solutions for Class 11 Chemistry
      • NCERT Solutions for Class 11 Biology
      • NCERT Solutions for Class 11 Economics
      • NCERT Solutions for Class 11 Computer Science (Python)
      • NCERT Solutions for Class 11 English
      • NCERT Solutions for Class 11 Hindi
    • Class 11 Commerce
      • NCERT Solutions for Class 11 Maths
      • NCERT Solutions for Class 11 Business Studies
      • NCERT Solutions for Class 11 Accountancy
      • NCERT Solutions for Class 11 Economics
      • NCERT Solutions for Class 11 Entrepreneurship
    • Class 11 Humanities
      • NCERT Solutions for Class 11 Psychology
      • NCERT Solutions for Class 11 Political Science
      • NCERT Solutions for Class 11 Economics
      • NCERT Solutions for Class 11 Indian Economic Development
  • Class 10
    • NCERT Solutions for Class 10 Maths
    • NCERT Solutions for Class 10 Science
    • NCERT Solutions for Class 10 Social Science
    • NCERT Solutions for Class 10 English
    • NCERT Solutions For Class 10 Hindi Sanchayan
    • NCERT Solutions For Class 10 Hindi Sparsh
    • NCERT Solutions For Class 10 Hindi Kshitiz
    • NCERT Solutions For Class 10 Hindi Kritika
    • NCERT Solutions for Class 10 Sanskrit
    • NCERT Solutions for Class 10 Foundation of Information Technology
  • Class 9
    • NCERT Solutions for Class 9 Maths
    • NCERT Solutions for Class 9 Science
    • NCERT Solutions for Class 9 Social Science
    • NCERT Solutions for Class 9 English
    • NCERT Solutions for Class 9 Hindi
    • NCERT Solutions for Class 9 Sanskrit
    • NCERT Solutions for Class 9 Foundation of IT
  • CBSE Sample Papers
    • Previous Year Question Papers
    • CBSE Topper Answer Sheet
    • CBSE Sample Papers for Class 12
    • CBSE Sample Papers for Class 11
    • CBSE Sample Papers for Class 10
    • CBSE Sample Papers for Class 9
    • CBSE Sample Papers Class 8
    • CBSE Sample Papers Class 7
    • CBSE Sample Papers Class 6
  • Textbook Solutions
    • Lakhmir Singh
    • Lakhmir Singh Class 10 Physics
    • Lakhmir Singh Class 10 Chemistry
    • Lakhmir Singh Class 10 Biology
    • Lakhmir Singh Class 9 Physics
    • Lakhmir Singh Class 9 Chemistry
    • PS Verma and VK Agarwal Biology Class 9 Solutions
    • Lakhmir Singh Science Class 8 Solutions

Learn CBSE

NCERT Solutions for Class 6, 7, 8, 9, 10, 11 and 12

Statistics Class 10 Extra Questions Maths Chapter 14 Solutions

January 9, 2023 by Sastry CBSE

Extra Questions for Class 10 Maths Statistics with Answers

Extra Questions for Class 10 Maths Chapter 14 Statistics. According to new CBSE Exam Pattern, MCQ Questions for Class 10 Maths Carries 20 Marks.

You can also download Class 10 Maths NCERT Solutions to help you to revise complete syllabus and score more marks in your examinations.

Statistics Class 10 Extra Questions Very Short Answer Type

Question 1.
Find the median of arranged series of an even number of n terms.
Answer:
We know that if n = Even
then Median = \(\frac{(n)^{t h} \text { term }+(n+1)^{t h} \text { term }}{2}\)

Question 2.
Find the median class of the following data:

Marks obtained Frequency
0-10 8
10-20 10
20-30 12
30-40 22
40-50 30
50-60 18

Answer:
Statistics Class 10 Extra Questions Maths Chapter 14 2
∴ \(\frac{\mathrm{N}}{2}=\frac{100}{2}\) = 50

Looking in the table c.f. just greater than 50 is 52.
∴ Median class = Class corresponding to 52 = 30 – 40.

Question 3.
Find the class marks of classes 10-25 and 35-55.
Answer:
Class mark of 10-25 = \(\frac{10+25}{2}=\frac{35}{2}\) = 17.5
Class mark of 35-55 = \(\frac{35+55}{2}=\frac{90}{2}\) = 45

Question 4.
The point of intersection of two ogives for a distribution is given by (23.7,40.5). What is the median?
Answer:
x-coordination of point of intersection of two ogives give 23.7.
∴ Median = 23.7

Question 5.
If mode = 400 and median = 500, find mean.
Answer:
Mean = Mode + \(\frac{3}{2}\) (Median – Mode)
= 400 + \(\frac{3}{2}\) (500 – 400)
= 400 + 150
= 550

Question 6.
What is the modal class of the following distribution?
Statistics Class 10 Extra Questions Maths Chapter 14 3
Answer:
The highest frequecny 38 corresponds to 30-40.
∴ The modal class is 30-40.

Question 7.
If the mode of the following data is 7, then find the value of k.
2, 4, 6, 7, 5, 6, 10, 6, 7, 2k + 1, 9, 7, 13
Answer:
There are two entries which occur 3 times each which are 6 and 7.
For 7 to be mode
2k + 1 = 7
k = \(\frac{6}{2}\) = 3

Question 8.
The mean of 6 numbers is 16 with the removal of a number the mean of remaining numbers is 17. Find the removed number.
Answer:
Let xd be the sixth number to be remove and x1 x2, …,x5 be remaining 5 numbers.
Statistics Class 10 Extra Questions Maths Chapter 14 4

Statistics Class 10 Extra Questions Short Answer Type-1

Question 1.
Age of pumps manufactured by a company are given in the following distribution table.

Age (in years) No. of Pumps
0-1 12
1-2 18
2-3 45
3-4 23
4-5 12
5-6 08
6-7 04

Calculate the modal age of pumps. [CBSE 2016]
Answer:
Maximum frequency is 45 and it corresponds to the class interval 2-3
∴ Modal class = 2 – 3
So, l = 2; fi = 45; f0 = 18, f2 = 23 and h = 1
Statistics Class 10 Extra Questions Maths Chapter 14 5

Question 2.
The mean of following frequency distribution is 70. Find the missing frequency x.

CL Frequency
0-20 5
20-40 8
40-60 21
60-80 12
80-100 x
100-120 8

Answer:
Statistics Class 10 Extra Questions Maths Chapter 14 6
⇒ 3780 + 70x = 3060 + 90x
⇒ 720 = 20x
⇒ x = \(\frac{720}{20}\) = 36

Question 3.
The mean of 11 numbers is 35. If mean of first 6 numbers is 32 and that of last 6 numbers is 37, find 6th number.
Answer:
Statistics Class 10 Extra Questions Maths Chapter 14 7
⇒ x6 + x7 + ……… + x11 = 37 × 6 = 222 ………..(iii)
(ii) and (iii)

⇒ (x1 + x2 + …….. + x6) + (x6 + …….. + x11) = 192 + 222
⇒ x6 + (x1 + x2 + ………. + x11) = 414
⇒ x6 + 385 = 414
⇒ x6 = 414 – 385 = 29 (∵ of (i))

Question 4.
If a variable x takes discrete value x + 4, x – \(\frac{7}{2}\), x – \(\frac{5}{2}\), x – 2, x + \(\frac{1}{2}\), x + 5, x – 3, x – \(\frac{1}{2}\), find its median.
Answer:
Arranging the data in ascending order
x – \(\frac{7}{2}\), x – 3, x – \(\frac{5}{2}\), x – 2, x – \(\frac{1}{2}\), x + \(\frac{1}{2}\), x + 4, x + 5
Here, N = 8 (even)
Statistics Class 10 Extra Questions Maths Chapter 14 8

Question 5.
Find the mode of the following data:

Height (in cm) No. of toys
0-10 6
10-20 10
20-30 12
30-40 32
40-50 20

Answer:
Modal class = 30 – 40
l = 30
f1 = 32, f0 = 12, f2 = 20
Statistics Class 10 Extra Questions Maths Chapter 14 9

Question 6.
Find median of the following data:
Statistics Class 10 Extra Questions Maths Chapter 14 10
Answer:
Here data is not in ascending order so we first arrange it in ascending order and then append a cumulative frequency column.

xi fi cf
15 3 3
21 5 8
27 6 14
30 7 21
35 8 29
N = 29

Here N = 29, which is odd
∴ Medium = \(\left(\frac{N+1}{2}\right)^{\text {th }}\) observation
= \(\left(\frac{29+1}{2}\right)^{\text {th }}\) = 15th observation
Since, 15th observation lie in the cumulative frequency 21 for which corresponding observation is 30.
∴ Median = 30

Question 7.
The mean of 9 items is 15. If one more item is added to this series, the mean becomes 16. Find the value of the 10th item.
Answer:
Statistics Class 10 Extra Questions Maths Chapter 14 11

Question 8.
In a school 85 boys and 35 girls appeared in a public examination. The mean marks of boys was found to be 40% whereas the mean marks of girls was 60%. Determine the average marks percentage of the school.
Answer:
Assuming the maximum marks to be 100.
Mean marks of boys (XB ) = 40
and mean marks of girls (XG ) = 60
Also no. of boys (nB) = 85
and no. of girls (nG) = 35

Question 9.
Construct a more than cumulative frequency distribution table for the given data:

Class interval Frequency
50-60 13
60-70 15
70-80 17
80-90 21
90-100 23
100-110 19

Answer:
Statistics Class 10 Extra Questions Maths Chapter 14 12

Question 10.
Find the median of following given data:

X f
6 9
7 12
5 8
2 13
10 11
9 14
3 7

Answer:
Statistics Class 10 Extra Questions Maths Chapter 14 13
\(\frac{N}{2}=\frac{74}{2}\) = 37
⇒ Median = 6.

Question 11.
Write a frequency distribution table for the following data:

Marks No. of student
Above 0 30
Above 10 28
Above 20 21
Above 30 15
Above 40 10
Above 50 0

Answer:

Marks No. of students
0-10 30 – 28 = 2
10-20 28 – 21 = 7
20-30 21 – 15 = 6
30-40 15 – 10 = 5
40-50 10-0 = 10
Total 30

Question 12.
The length of 42 leaves of a plant are measured correct up to nearest millimetre and the data is as under:

Length (in mm) Number of leaves
118-126 4
126-134 5
134-142 10
142-150 14
150-158 4
158-166 5

Find the modal length of a leave.
Answer:
Since, the maximum number of leaves is 14, therefore modal class 142-150, l = 142, h = 8, f1 = 14, f0 = 10, f2 = 4
Mode = l + \(\frac{f_1-f_0}{2 f_1-f_0-f_2}\) × h
= 142 + \(\frac{14-10}{2 \times 14-10-4}\) × 8
= 142 + \(\frac{4}{14}\) × 8 = 144.29

Question 13.
Find the mean of the following frequency distributions by the direct method:
Statistics Class 10 Extra Questions Maths Chapter 14 14
Answer:
Statistics Class 10 Extra Questions Maths Chapter 14 15
Σf × x = 93, Σf = 15
Mean = \(\frac{\Sigma f x}{\Sigma f}=\frac{93}{15}\) = 6.2

Statistics Class 10 Extra Questions Short Answer Type-2

Question 1.
For Uttarakhand flood victims, money donated by teachers of a school is shown in the following frequency distribution:

Money donated (in ₹) No. of Teachers
500-700 4
700-900 3
900-1100 18
1100-1300 2
1300-1500 3

Find mean and median for this data. [CBSE Delhi 2016]
Answer:
Mean:
Statistics Class 10 Extra Questions Maths Chapter 14 16
From the above data, Assumed mean (a) = 1000
Width of the class (h) = 200
∴ ū = \(\frac{\sum f_i u_i}{\sum f_i}=\frac{0}{30}\) = 0

Mean (x̄) = a + hū
= 1000 + 100 × 0
= 1000

Median
Statistics Class 10 Extra Questions Maths Chapter 14 17
Here, Σfi = n = 30, then \(\frac{n}{2}=\frac{30}{2}\) =15
which lies in interval 900 – 1100.
Median class = 900 – 1100
l = 900, n = 30, f = 18, cf = 7 and h = 200
Statistics Class 10 Extra Questions Maths Chapter 14 18

Question 2.
The table below shows the salaries of 280 persons:

Salary (In thousand ₹) No. of Persons
5-10 49
10 – 15 133
15 – 20 63
20 – 25 15
25 – 30 6
30 – 35 7
35 – 40 4
40 – 45 2
45-50 1

Calculate the median salary of the data.
Answer:
Statistics Class 10 Extra Questions Maths Chapter 14 19
\(\frac{\mathrm{N}}{2}=\frac{280}{2}\) = 140
Median class is 10 – 15
Median = l + \(\frac{h}{f}\left(\frac{\mathrm{N}}{2}-C\right)\)
= 10 + \(\frac{5}{133}\)(140 – 49)
= 10 + \(\frac{5 \times 91}{133}\) = 13.42
Median salary is ₹ 13.42 thousand or ₹ 13420 (approx).

Question 3.
The mean of the following frequency distribution is 62.8 and the sum of all frequencies is 50. Compute the missing frequencies f1 and f2.

Class Frequency
0-20 5
20-40 A
40-60 10
60-80 A
80-100 7
100-120 8
Total 50

Answer:
Statistics Class 10 Extra Questions Maths Chapter 14 20
Now 50 = 5 + f1 + 10 + f2 + 7 + 8
⇒ 50 = 30 + f1 + f2
⇒ f1 + f2 = 20 ……….(i)

Also, Mean = \(\frac{\Sigma f_i x_i}{\Sigma f_i}\)
⇒ 62.8 = \(\frac{2060+30 f_1+70 f_2}{50}\)
3140 = 2060 + 30f1 + 70f2
3f1 + 7f2 = 108

Solving (i) and (ii), we get
f1 = 8 and f2 = 12

Question 4.
Find the missing frequecny (x) of the following data if its mode is ₹240.
Answer:
Here mode is given to be ₹ 240, which lies between 200 and 300. Therefore, modal class is 200 – 300
We have l = 200, f1 = 270, f0 = 230, f2 = x
Statistics Class 10 Extra Questions Maths Chapter 14 21
12400 – 40x = 4000
40x = 12400 – 4000
40x = 8400
x = 210

Question 5.
Find the missing frequency f1 and f2 if mean of 50 observations is 38.2.

Class interval Frequency
0-10 4
10-20 4
20-30 f1
30-40 10
40-50 f2
50-60 8
60-70 5

Answer:

Class interval Frequency fi xi fixi
0-10 4 5 20
10-20 4 15 60
20-30 f1 25 25f1
30-40 10 35 350
40-50 f2 45 45f2
50-60 8 55 440
60-70 5 65 325
Total 50 1195 + 25f1 + 45f2

Σfi = 31 + f1 + f2
31 + f1 + f2
f1 + f2 = 19 ………..(i)
38.2 = \(\frac{1195+25 f_1+45 f_2}{50}\)
Statistics Class 10 Extra Questions Maths Chapter 14 22
⇒ f2 = 12

Putting f2 = 12 in (i)
⇒ f1 = 7

Question 6.
Find the mean of the following frequency distribution by short cut method:
Statistics Class 10 Extra Questions Maths Chapter 14 23
Answer:
Statistics Class 10 Extra Questions Maths Chapter 14 24
Let assumed mean (A) be 35.
∴ Mean (x̄) = A + \(\frac{\Sigma f_i d_i}{\Sigma f_i}\) = 35 + \(\frac{160}{60}\)
= 35 + 2.67
= 37.67

Question 7.
Form a grouped frequency distribution and calculate the median.
Statistics Class 10 Extra Questions Maths Chapter 14 25
Answer:
We first convert the given data into grouped frequency distribution and then append a cumulative frequency column as given below.
Statistics Class 10 Extra Questions Maths Chapter 14 26
Here N = 80 ⇒ \(\frac{\mathrm{N}}{2}=\frac{80}{2}\) = 40
Cumulative frequency just greater than or equal to 40 is 52 which corresponds to 50 – 60.
Median class = 50-60
The lower limit of the median class (l) – 50
The cumulative frequency of the class preceding the median class (cf) = 37
The frequency of the median class (50 – 60) (f) = 15
The width of the median class (h) = 10
∴ Median = l + \(\frac{\left(\frac{\mathrm{N}}{2}-c f\right)}{f}\) × h
= 50 + \(\left(\frac{40-37}{15}\right)\) × 10
= 50 + \(\frac{30}{15}\) = 50 + 2 = 52

Question 8.
The mean of the following distribution is 18. [CBSE 2018]
Statistics Class 10 Extra Questions Maths Chapter 14 27
Answer:
Let the assumed mean (a) = 18
∵ h = 2
∴ ui = \(\frac{x_i-18}{2}\)
∴ We have the following table:
Statistics Class 10 Extra Questions Maths Chapter 14 28
Statistics Class 10 Extra Questions Maths Chapter 14 29

Question 9.
Find the mode of the following distribution of marks obtained by the students in an examination:
Statistics Class 10 Extra Questions Maths Chapter 14 30
Given the mean of the above distribution is 53, using emperical relationship estimate the value of its median.
Answer:
Sol. Modal class is 60-80 (Class corresponding to maximum frequency)
∴ Mode = l + \(\left(\frac{f_1-f_0}{2 f_1-f_0-f_2}\right)\) × h
= 60 + \(\left(\frac{29-21}{58-21-17}\right)\) × 20 = 68
So, the mode marks is 68.
Empirical relationship between the three measures of central tendencies is:
3 Median = Mode + 2 mean
3 Median = 68 + 2 × 53
Median = 58 marks

Statistics Class 10 Extra Questions Long Answer Type 1

Question 1.
If the median of the following frequency distribution is 32.5. Find the values of f1 and f2. [CBSE 2019]
Statistics Class 10 Extra Questions Maths Chapter 14 31
Or
The marks obtained by 100 students of a class in an examination are given below.

Marks No. of Students
0-5 2
5-10 5
10-15 6
15-20 8
20-25 10
25-30 25
30-35 20
35-40 18
40-45 4
45-50 2

Draw ‘a less than’ type cumulative frequency curves (Ogive). Hence find median.
Answer:
Statistics Class 10 Extra Questions Maths Chapter 14 32
Median = 32.5
∴ Median class is 30-40
Median = \(\frac{l+\left(\frac{\mathrm{N}}{2}-\mathrm{C}\right)}{f}\) × h
Here, l = 30, N = 40, C = 14 + f1
f1 = 12, h = 10
∴ 32.5 = 30 + \(\frac{10}{12}\)(20 – 14 – f1)
⇒ f1 = 3
Also, 31 + f1 + f2 = 40
Putting f1 = 3 in (2)
⇒ f2 = 6

Or
Statistics Class 10 Extra Questions Maths Chapter 14 33
Next we plot the points of last column
Statistics Class 10 Extra Questions Maths Chapter 14 34
Mark point ‘F corresponding to \(\frac{N}{2}\) = 50.
Draw PM ∥ x-axis to cut Ogive at M.
Draw MN ⊥ x-axis to cut it at N.
Since, N is (29, 0)
∴ Median = 29.

Question 2.
If the mean of the following frequency distribution is 62.8, then find the missing frequency x: [CBSE 2019(C)]

Class Frequency
0-20 5
20-40 8
40-60 X
60-80 12
80-100 7
100-120 8

Answer:
Statistics Class 10 Extra Questions Maths Chapter 14 35
Now, mean (x̄) = \(\frac{\sum f_i x_i}{\sum f_i}\)
62.8 = \(\frac{(50 x+2640)}{40+x}\)
⇒ 62.8 (40 + x) = 50x + 2640
⇒ 2512 + 62.8x = 50x + 2640
⇒ 12.8x = 128
⇒ x = \(\frac{128}{12.8}\) = 10

Question 3.
Find the mean, mode and median of the following data:

Classes Frequency (f)
0-10 3
10-20 8
20-30 10
30-40 15
40-50 7
50-60 4
60-70 3

Answer:
We prepare the table which serves all three purposes of getting mean, median and mode as given below:
Statistics Class 10 Extra Questions Maths Chapter 14 36
(i) Mean: Let assumed mean (A) be 35.
Mean = A + \(\left(\frac{\Sigma f_i u_i}{\Sigma f_i} \times h\right)\)
= 35 + \(\left(\frac{-11}{50} \times 10\right)\)
= 35 – 2.2 = 32.8

(ii) Mode: As maximum frequency is 15.
∴ Mode classes is 30-40.
Thus f1 = 15, f0 = 10 , f2 = 7
Mode = l + \(\left(\frac{f_1-f_0}{2 f_1-f_0-f_2}\right)\) × h
= 30 + \(\left(\frac{15-10}{30-10-7}\right)\) × 10
= 30 + \(\frac{50}{13}\) = 30 + 3.85 = 33.85

(iii) Median: Here N = 50 ⇒ \(\frac{N}{2}\) = 25
The cumulative frequency just greater than 25 is 36 and the corresponding class is 30-40.
∴ Median class = 30-40, l = 30, cf = 21, f = 15
Now, Median = l + \(\left(\frac{\frac{\mathrm{N}}{2}-c f}{f}\right)\) × h
= 30 + \(\left(\frac{25-21}{15}\right)\) × 10
= 30 + \(\frac{40}{15}\) = 30 + 2.67 = 32.67

Question 4.
During the medical check up of 35 students of a class, their weights were recorded as follows:
Statistics Class 10 Extra Questions Maths Chapter 14 37
Draw a less than type ogive for the given data. Hence obtain the median weight from the graph and verify by using the formula.
Answer:
Here data is already tabulated as less than cumulative frequency table.
So, we have to just plot the ordered pairs (38,0), (40,3), (42,5), (44,9), (46,14), (48,28), (50,32) and (52,35) join them by free hand to get the less than type ogive as shown below:
Here \(\frac{\mathrm{N}}{2}=\frac{35}{2}\) = 17.5. So we mark a point R on y-axis such that OR = 17.5
Statistics Class 10 Extra Questions Maths Chapter 14 38
Draw a line RP parallel to x-axis as shown in graph which meets the ogive at point P.
Draw PM ⊥ OX
Now Since OM = 46.5
∴ Median = 46.5
Verification: For calculation median by using formula we first convert the given cumulative frequency table to continuous grouped frequency distribution as given below:
Statistics Class 10 Extra Questions Maths Chapter 14 39

Question 5.
Draw ‘Less than’ and ‘more than’ ogives for the following distribution and hence find its median.

Class Frequency
20-30 8
30-40 12
40-50 24
50-60 6
60-70 10
70-80 15
80-90 25

Answer:

‘Less than ogive’
‘Less than’ c.f Ordered pairs
20 0 (20, 0)
30 8 (30, 8)
40 20 (40, 20)
50 44 (50, 44)
60 50 (60, 50)
70 60 (70, 60)
80 75 (80, 75)
90 100 (90,100)
‘More than ogive’
‘More than’ c.f Ordered pairs
20 100 (20,100)
30 92 (30, 92)
40 80 (40, 80)
50 56 (50, 56)
60 50 (60,50)
70 40 (70,40)
80 25 (80, 25)
90 0 (90,0)

The ‘less than’ type and ‘more than’ type ogives can be drawn on graph paper as:
Statistics Class 10 Extra Questions Maths Chapter 14 40
It can be observed that the ‘less than’ type and ‘more than’ type ogives of the given frequency distribution intersect at point P(60, 50). If we draw a perpendicular to the x-axis from point P, then the value on the x-axis is obtained as 60.
Thus, the median of the given data is 60.

Question 6.
Calculate the mode of the following frequency distribution table:

Marks Number of students
Above 25 52
Above 35 47
Above 45 37
Above 55 17
Above 65 8
Above 75 2
Above 85 0

Answer:

CL f c.f
25-35 5 52
35-45 10 47
45-55 20 37
55-65 9 17
65-75 6 8
75-85 2 2

∴ Mode = l + \(\left[\frac{f_1-f_0}{2 f_1-f_0-f_2}\right]\) × h
= 45 + \(\frac{(20-10)}{2 \times 20-10-9}\) × 10
= 45 + \(\frac{100}{21}\)
= 49.76

Question 7.
The following table shows the ages of 100 persons of a locality. Draw less than ogive.

Age (in years) Number of persons
0-10 5
10-20 15
20-30 20
30-40 23
40-50 17
50-60 11
60-70 9

Answer:

Age (in years) No. of persons Ordered pairs
Less than 10 5 (10,5)
Less than 20 20 (20, 20)
Less than 30 40 (30,40)
Less than 40 63 (40, 63)
Less than 50 80 (50, 80)
Less than 60 91 (60, 91)
Less than 70 100 (70,100)

At A(Corresponding to \(\frac{N}{2}\) = 50) draw AP ∥x-axis
From P draw PM ⊥x -axis. Abscissa of M is 34.5(approx)
∴ Median = 34.5 (Approx)
Statistics Class 10 Extra Questions Maths Chapter 14 41

Question 8.
Find the mode, median and mean for the following data:
Statistics Class 10 Extra Questions Maths Chapter 14 42
Answer:
Let the assumed mean a = 60. Here h = 10, we have:
Statistics Class 10 Extra Questions Maths Chapter 14 43
Statistics Class 10 Extra Questions Maths Chapter 14 44
(iii) Mode: Greatest frequency is 33 which corresponds to the class 45-55.
l1 = 45, h = 10
f1 = 33, f2 = 17
f0 = 31
Statistics Class 10 Extra Questions Maths Chapter 14 45

Question 9.
The following frequency distribution shows the distance (in metress) thrown by 68 students in a Javelin throw competition.

Distance (in m) Number of students
0-10 4
10-20 5
20-30 13
30-40 20
40-50 14
50-60 8
60-70 4

Draw a less than type ogive for the given data and find the median distance thrown using this curve. [CBSE Sample Paper 2017-18)]
Answer:

Less than Number of Students
10 4
20 9
30 22
40 42
50 56
60 64
70 68

Median distance is value of x that corresponds to
Cumulative frequency \(\frac{\mathrm{N}}{2}=\frac{67}{2}\) = 34
Therefore, Median distance = 36 m
Statistics Class 10 Extra Questions Maths Chapter 14 46

Statistics Class 10 Extra Questions HOTS

Question 1.
Average cost of 5 apples and 2 pineapples is ₹ 250. The average cost of 7 apples and 4 pineapples is ₹ 340. Find the total cost of 24 apples and 12 pineapples.
Answer:
Average cost of 5 apples and 2 pineapples = ₹ 250
⇒ Total cost of 5 apples and 2 pineapples = ₹ (250 × 7)
= ₹ 1750 …(i)
Similarly, total cost of 7 apples and 4 pineapples = (₹ 340 × 11)
= ₹ 3740 …(ii)
(i) and (it)
⇒ Total cost of (5 + 7 = 12) apples and (2 + 4 = 6)
pineapples = ₹ 1750 + ₹ 3740 = ₹ 5490
Thus cost of 24 apples and 12 pineapples = ₹ (5490 × 2) = ₹ 10980

Question 2.
A student finds the average of 10 positive integers. Each integer contains two digits. By mistake, the boy interchanged the digits of one number. Due to this average becomes 1.8 less than the previous one. What was the difference of digits of the number which was wrongly written.
Answer:
Let the sum of 9 correct numbers be ‘A’ and the units and tens place digits of 10th number be x and y respectively.
∴ x̄ = \(\frac{\mathrm{A}+(10 x+y)}{10}\) …….(i)
When digits interchanged for 10th number its value becomes lOx + y.
By the condition, x̄ – 1.8 = \(\frac{\mathrm{A}+(10 x+y)}{10}\)
⇒ x = \(\frac{\mathrm{A}+(10 x+y)}{10}\) …(ii)
From (i) and (ii), we get
\(\frac{\mathrm{A}+(10 y+x)}{10}=\frac{\mathrm{A}+(10 x+y)}{10}\) + 1.8
⇒ A + (10x + y) + 18 = A + 10y + x
⇒ 9y – 9x = 18
⇒ y – x = 2
Thus the difference of digits = 2.

Multiple Choice Questions
Choose the correct option out of four given in each of the following:

Question 1.
In the given frequency distribution table, the values of missing frequency a1 and a2 respectively are:

Cl. Frequency Cumulative frequency
0-10 5 a3
10-20 a1 12
20-30 9 21
30-40 a2 31
40-50 9 fl4

(a) a1 = 5, a2 = 5
(b) a1 = 7, a2 = 5
(c) a1 = 7, a2 = 10
(d) a1 = 5, a2 = 10
Answer:
(c) a1 = 7, a2 = 10

Question 2.
For a frequency distribution, mean, median and mode are connected by the relation:
(a) Mode = 3 Mean – 2 Median
(b) Mode = 2 Median – 3 Mean
(c) Mode = 3 Median – 2 Mean
(d) Mode = 3 Median + 2 Mean
Answer:
(c) Mode = 3 Median – 2 Mean

Question 3.
The mean of a discrete frequency distribution xi|fi; i = 1, 2, 3, …………. n is given by
Statistics Class 10 Extra Questions Maths Chapter 14 1
Answer:
(b) \(\frac{\sum_{i=1}^n f_i x_i}{\sum_{i=1}^n f_i}\)

Question 4.
In the formula x̄ = A + \(\frac{\sum f_i d_i}{\sum f_i}\) for finding the mean of grouped data d-s are deviations from A of:
(a) lower limits of the classes
(b) upper limits of the classes
(c) mid point of classes
(d) frequencies of the class marks.
Answer:
(c) mid point of classes

Question 5.
Construction of cumulative frequency table is useful in determining the
(a) mean
(b) median
(c) mode
(d) all, mean, mode and median.
Answer:
(b) median

Question 6.
In the formula x̄ = A + \(\frac{\sum f_i u_i}{\sum f_i}\) × h, for finding the mean of grouped frequency distribution, ui =
(a) (xi + A)/h
(b) h(xi – A)
(c) (xi – A)/h
(d) (A – xi)/h
Answer:
(c) (xi – A)/h

Question 7.
While computing mean of grouped data, we assume that the frequencies are:
(a) evenly distributed over all classes
(b) centered at the class marks of classes
(c) centered at upper limits of classes
(d) centered at lower limts of classes.
Answer:
(b) centered at the class marks of classes

Question 8.
If xi‘s are the mid points of the class intervals of grouped data, f’is are the corresponding frequencies and x is the mean, then Σfi(xi – x̄) is equal to:
(a) zero
(b) – 1
(c) 1
(d) 2
Answer:
(a) zero

Question 9.
Which of the following is not a measure of central tendency ?
(a) Mean
(b) Median
(c) Mode
(d) Variance
Answer:
(d) Variance

Question 10.
The mean of a set of numbers is x̄. If each number is divided by 3, then the new mean is:
(a) x̄
(b) x̄ + 3
(c) 3x̄
(d) \(\frac{\bar{x}}{3}\)
Answer:
(d) \(\frac{\bar{x}}{3}\)

Question 11.
Mean of a set of 8 observations is 10 and 4 is the mean of a set of 7 observations. The mean of the combined set is given by:
(a) 10.8
(b) 7.2
(c) 8.2
(d) 9
Answer:
(d) 9

Question 12.
The mode of a frequency distribution can be determined graphically from:
(a) histogram
(b) frequency polygon
(c) ogive
(d) frequency curve.
Answer:
(a) histogram

Question 13.
The algebraic sum of the deviations of a frequency distribution from its mean is:
(a) always positive
(b) always negative
(c) 0
(d) a non-zero number.
Answer:
(c) 0

Question 14.
The median of a given frequency distribution is found graphically with the help of:
(a) histogram
(b) frequency polygon
(c) frequency curve
(d) ogive.
Answer:
(d) ogive.

Question 15.
What is not true about mode ?
(a) It can be determined graphically
(b) It is the most frequent value
(c) The formula for finding mode is l + \(\left(\frac{f_1-f_0}{2 f_1-f_0-f_2}\right)\) × h
(d) None of these.
Answer:
(d) None of these.

Fill in the Blanks

Question 1.
That value of data from which algebraic sum of deviations of each observation vanishes is ____________ of the data.
Answer:
mean

Question 2.
The most frequent value of data is called ____________
Answer:
Mode

Question 3.
Another one word name for mean is ____________
Answer:
Average

Question 4.
If 50% of the observation lies above a value and another 50% alongside or below it, then this value is called as ____________
Answer:
Median

Question 5.
In case of categorical data ____________ is used as measure of central tendency.
Answer:
Mode

Question 6.
To find the mode of a grouped data, the size of the classes is ____________ (uniform/non-uniform)
Answer:
uniform

Question 7.
The class mark of a class interval p-q is ____________
Answer:
\(\frac{p+q}{2}\)

Question 8.
Two ogives, ‘less than’ type and ‘more than’ type of the same data intersect at the point P. The height of this point P represents ____________
Answer:
Half of total frequency

Question 9.
For a distribution with odd number (n) of observations, median = ____________.
Answer:
\(\left(\frac{n+1}{2}\right)^{\mathrm{th}}\) observation

Question 10.
For a distribution with even number (n) of observations, median = ____________.
Answer:
Mean of \(\left(\frac{n}{2}\right)^{\text {th }}\) and \(\left(\frac{n}{2}+1\right)^{\text {th }}\) observation

Extra Questions for Class 10 Maths

NCERT Solutions for Class 10 Maths

Filed Under: CBSE

LearnCBSE Sample Papers
  • Words by Length
  • NEET MCQ
  • Factoring Calculator
  • Rational Numbers
  • CGPA Calculator
  • TOP Universities in India
  • TOP Engineering Colleges in India
  • TOP Pharmacy Colleges in India
  • Coding for Kids
  • Math Riddles for Kids with Answers
  • General Knowledge for Kids
  • General Knowledge
  • Scholarships for Students
  • NSP - National Scholarip Portal
  • Class 12 Maths NCERT Solutions
  • Class 11 Maths NCERT Solutions
  • NCERT Solutions for Class 10 Maths
  • NCERT Solutions for Class 9 Maths
  • NCERT Solutions for Class 8 Maths
  • NCERT Solutions for Class 7 Maths
  • NCERT Solutions for Class 6 Maths
  • NCERT Solutions for Class 6 Science
  • NCERT Solutions for Class 7 Science
  • NCERT Solutions for Class 8 Science
  • NCERT Solutions for Class 9 Science
  • NCERT Solutions for Class 10 Science
  • NCERT Solutions for Class 11 Physics
  • NCERT Solutions for Class 11 Chemistry
  • NCERT Solutions for Class 12 Physics
  • NCERT Solutions for Class 12 Chemistry
  • NCERT Solutions for Class 10 Science Chapter 1
  • NCERT Solutions for Class 10 Science Chapter 2
  • Metals and Nonmetals Class 10
  • carbon and its compounds class 10
  • Periodic Classification of Elements Class 10
  • Life Process Class 10
  • NCERT Solutions for Class 10 Science Chapter 7
  • NCERT Solutions for Class 10 Science Chapter 8
  • NCERT Solutions for Class 10 Science Chapter 9
  • NCERT Solutions for Class 10 Science Chapter 10
  • NCERT Solutions for Class 10 Science Chapter 11
  • NCERT Solutions for Class 10 Science Chapter 12
  • NCERT Solutions for Class 10 Science Chapter 13
  • NCERT Solutions for Class 10 Science Chapter 14
  • NCERT Solutions for Class 10 Science Chapter 15
  • NCERT Solutions for Class 10 Science Chapter 16

Free Resources

RD Sharma Class 12 Solutions RD Sharma Class 11
RD Sharma Class 10 RD Sharma Class 9
RD Sharma Class 8 RD Sharma Class 7
CBSE Previous Year Question Papers Class 12 CBSE Previous Year Question Papers Class 10
NCERT Books Maths Formulas
CBSE Sample Papers Vedic Maths
NCERT Library

 

NCERT Solutions

NCERT Solutions for Class 10
NCERT Solutions for Class 9
NCERT Solutions for Class 8
NCERT Solutions for Class 7
NCERT Solutions for Class 6
NCERT Solutions for Class 5
NCERT Solutions for Class 4
NCERT Solutions for Class 3
NCERT Solutions for Class 2
NCERT Solutions for Class 1

Quick Resources

English Grammar Hindi Grammar
Textbook Solutions Maths NCERT Solutions
Science NCERT Solutions Social Science NCERT Solutions
English Solutions Hindi NCERT Solutions
NCERT Exemplar Problems Engineering Entrance Exams
Like us on Facebook Follow us on Twitter
Watch Youtube Videos NCERT Solutions App