• NCERT Solutions
    • NCERT Library
  • RD Sharma
    • RD Sharma Class 12 Solutions
    • RD Sharma Class 11 Solutions Free PDF Download
    • RD Sharma Class 10 Solutions
    • RD Sharma Class 9 Solutions
    • RD Sharma Class 8 Solutions
    • RD Sharma Class 7 Solutions
    • RD Sharma Class 6 Solutions
  • Class 12
    • Class 12 Science
      • NCERT Solutions for Class 12 Maths
      • NCERT Solutions for Class 12 Physics
      • NCERT Solutions for Class 12 Chemistry
      • NCERT Solutions for Class 12 Biology
      • NCERT Solutions for Class 12 Economics
      • NCERT Solutions for Class 12 Computer Science (Python)
      • NCERT Solutions for Class 12 Computer Science (C++)
      • NCERT Solutions for Class 12 English
      • NCERT Solutions for Class 12 Hindi
    • Class 12 Commerce
      • NCERT Solutions for Class 12 Maths
      • NCERT Solutions for Class 12 Business Studies
      • NCERT Solutions for Class 12 Accountancy
      • NCERT Solutions for Class 12 Micro Economics
      • NCERT Solutions for Class 12 Macro Economics
      • NCERT Solutions for Class 12 Entrepreneurship
    • Class 12 Humanities
      • NCERT Solutions for Class 12 History
      • NCERT Solutions for Class 12 Political Science
      • NCERT Solutions for Class 12 Economics
      • NCERT Solutions for Class 12 Sociology
      • NCERT Solutions for Class 12 Psychology
  • Class 11
    • Class 11 Science
      • NCERT Solutions for Class 11 Maths
      • NCERT Solutions for Class 11 Physics
      • NCERT Solutions for Class 11 Chemistry
      • NCERT Solutions for Class 11 Biology
      • NCERT Solutions for Class 11 Economics
      • NCERT Solutions for Class 11 Computer Science (Python)
      • NCERT Solutions for Class 11 English
      • NCERT Solutions for Class 11 Hindi
    • Class 11 Commerce
      • NCERT Solutions for Class 11 Maths
      • NCERT Solutions for Class 11 Business Studies
      • NCERT Solutions for Class 11 Accountancy
      • NCERT Solutions for Class 11 Economics
      • NCERT Solutions for Class 11 Entrepreneurship
    • Class 11 Humanities
      • NCERT Solutions for Class 11 Psychology
      • NCERT Solutions for Class 11 Political Science
      • NCERT Solutions for Class 11 Economics
      • NCERT Solutions for Class 11 Indian Economic Development
  • Class 10
    • NCERT Solutions for Class 10 Maths
    • NCERT Solutions for Class 10 Science
    • NCERT Solutions for Class 10 Social Science
    • NCERT Solutions for Class 10 English
    • NCERT Solutions For Class 10 Hindi Sanchayan
    • NCERT Solutions For Class 10 Hindi Sparsh
    • NCERT Solutions For Class 10 Hindi Kshitiz
    • NCERT Solutions For Class 10 Hindi Kritika
    • NCERT Solutions for Class 10 Sanskrit
    • NCERT Solutions for Class 10 Foundation of Information Technology
  • Class 9
    • NCERT Solutions for Class 9 Maths
    • NCERT Solutions for Class 9 Science
    • NCERT Solutions for Class 9 Social Science
    • NCERT Solutions for Class 9 English
    • NCERT Solutions for Class 9 Hindi
    • NCERT Solutions for Class 9 Sanskrit
    • NCERT Solutions for Class 9 Foundation of IT
  • CBSE Sample Papers
    • Previous Year Question Papers
    • CBSE Topper Answer Sheet
    • CBSE Sample Papers for Class 12
    • CBSE Sample Papers for Class 11
    • CBSE Sample Papers for Class 10
    • Solved CBSE Sample Papers for Class 9 with Solutions 2024-2025
    • CBSE Sample Papers Class 8
    • CBSE Sample Papers Class 7
    • CBSE Sample Papers Class 6
  • Textbook Solutions
    • Lakhmir Singh
    • Lakhmir Singh Class 10 Physics
    • Lakhmir Singh Class 10 Chemistry
    • Lakhmir Singh Class 10 Biology
    • Lakhmir Singh Class 9 Physics
    • Lakhmir Singh Class 9 Chemistry
    • PS Verma and VK Agarwal Biology Class 9 Solutions
    • Lakhmir Singh Science Class 8 Solutions

Learn CBSE

NCERT Solutions for Class 6, 7, 8, 9, 10, 11 and 12

Determinants Class 12 Notes Maths Chapter 4

January 9, 2024 by Sastry CBSE

CBSE Class 12 Maths Notes Chapter 4 Determinants

Determinant: Determinant is the numerical value of the square matrix. So, to every square matrix A = [aij] of order n, we can associate a number (real or complex) called determinant of the square matrix A. It is denoted by det A or |A|.
Note
(i) Read |A| as determinant A not absolute value of A.
(ii) Determinant gives numerical value but matrix do not give numerical value.
(iii) A determinant always has an equal number of rows and columns, i.e. only square matrix have determinants.

Value of a Determinant
Value of determinant of a matrix of order 2, A = \(\begin{bmatrix} { a }_{ 11 } & { a }_{ 12 } \\ { a }_{ 21 } & { a }_{ 22 } \end{bmatrix}\) is
Determinants Class 12 Notes Maths Chapter 4 1

Value of determinant of a matrix of order 3, A = \(\left[ \begin{matrix} { a }_{ 11 } & { a }_{ 12 } & { a }_{ 13 } \\ { a }_{ 21 } & { a }_{ 22 } & { a }_{ 23 } \\ { a }_{ 31 } & { a }_{ 32 } & { a }_{ 33 } \end{matrix} \right]\) is given by expressing it in terms of second order determinant. This is known as expansion of a determinant along a row (or column).
Determinants Class 12 Notes Maths Chapter 4 2

Note
(i) For easier calculations of determinant, we shall expand the determinant along that row or column which contains the maximum number of zeroes.
(ii) While expanding, instead of multiplying by (-1)i+j, we can multiply by +1 or -1 according to as (i + j) is even or odd.

Let A be a matrix of order n and let |A| = x. Then, |kA| = kn |A| = kn x, where n = 1, 2, 3,…

Minor: Minor of an element ay of a determinant, is a determinant obtained by deleting the ith row and jth column in which element ay lies. Minor of an element aij is denoted by Mij.
Note: Minor of an element of a determinant of order n(n ≥ 2) is a determinant of order (n – 1).

Cofactor: Cofactor of an element aij of a determinant, denoted by Aij or Cij is defined as Aij = (-1)i+j Mij, where Mij is a minor of an element aij.
Note
(i) For expanding the determinant, we can use minors and cofactors as
Determinants Class 12 Notes Maths Chapter 4 3
(ii) If elements of a row (or column) are multiplied with cofactors of any other row (or column), then their sum is zero.

Singular and non-singular Matrix: If the value of determinant corresponding to a square matrix is zero, then the matrix is said to be a singular matrix, otherwise it is non-singular matrix, i.e. for a square matrix A, if |A| ≠ 0, then it is said to be a non-singular matrix and of |A| = 0, then it is said to be a singular matrix.
Theorems
(i) If A and B are non-singular matrices of the same order, then AB and BA are also non-singular matrices of the same order.
(ii) The determinant of the product of matrices is equal to the product of their respective determinants, i.e. |AB| = |A||B|, where A and B are a square matrix of the same order.

Adjoint of a Matrix: The adjoint of a square matrix ‘A’ is the transpose of the matrix which obtained by cofactors of each element of a determinant corresponding to that given matrix. It is denoted by adj(A).
In general, adjoint of a matrix A = [aij]n×n is a matrix [Aji]n×n, where Aji is a cofactor of element aji.

Properties of Adjoint of a Matrix
If A is a square matrix of order n × n, then

  • A(adj A) = (adj A)A = |A| In
  • |adj A| = |A|n-1
  • adj (AT) = (adj A)T

The area of a triangle whose vertices are (x1, y1), (x2, y2) and (x3, y3) is given by
Determinants Class 12 Notes Maths Chapter 4 4
NOTE: Since the area is a positive quantity we always take the absolute value of the determinant.

Properties of Determinants
To find the value of the determinant, we try to make the maximum possible zero in a row (or a column) by using properties given below and then expand the determinant corresponding that row (or column).
Following are the various properties of determinants:
1. If all the elements of any row or column of a determinant are zero, then the value of a determinant is zero.

2. If each element of any one row or one column of a determinant is a multiple of scalar k, then the value of the determinant is a multiple of k. then the value of the determinant is a multiple of k. i.e.
Determinants Class 12 Notes Maths Chapter 4 5

3. If in a determinant any two rows or columns are interchanged, then the value of the determinant obtained is negative of the value of the given determinant. If we make n such changes of rows (columns) indeterminant ∆ and obtain determinant ∆ , then ∆1 = (-1)n ∆.
Determinants Class 12 Notes Maths Chapter 4 6

4. If all corresponding elements of any two rows or columns of a determinant are identical or proportional, then the value of the determinant is zero.
Determinants Class 12 Notes Maths Chapter 4 7
[∴ R1 and R3 are identical.]

5. The value of a determinant remains unchanged on changing rows into columns and columns into rows. It follows that, if A is a square matrix, then |A’| = |A|.
Determinants Class 12 Notes Maths Chapter 4 8
Note: det(A) = det(A’), where A’ = transpose of A.

6. If some or all elements of a row or column of a determinant are expressed as a sum of two or more terms, then the determinant can be expressed as the sum of two or more determinants, i.e.
Determinants Class 12 Notes Maths Chapter 4 9

7. In the elements of any row or column of a determinant, if we add or subtract the multiples of corresponding elements of any other row or column, then the value of determinant remains unchanged, i.e.
Determinants Class 12 Notes Maths Chapter 4 10
In other words, the value of determinants remains the same, if we apply the operation Ri → Ri + kEj or Ci → Cj → kCj.

Inverse of a Matrix and Applications of Determinants and Matrix
1. Inverse of a Square Matrix: If A is a non-singular matrix (i.e. |A| ≠ 0), then
Determinants Class 12 Notes Maths Chapter 4 11
Note: Inverse of a matrix, if exists, is unique.

Properties of a Inverse Matrix

  • (A-1)-1 = A
  • (AT)-1=(A-1)T
  • (AB)-1 = B-1A-1
  • (ABC)-1 =C-1B-1A-1
  • adj (A-1) = (adj A)-1

2. Solution of system of linear equations using inverse of a matrix.
Let the given system of equations be a1x + b1y + c1z = d1; a2x + b2y + c2z = d2 and a3x + b3y + c3z = d3.
We write the following system of linear equations in matrix form as AX = B, where
Determinants Class 12 Notes Maths Chapter 4 12
Case I: If |A| ≠ 0, then the system is consistent and has a unique solution which is given by X = A-1B.
Case II: If |A| = 0 and (adj A) B ≠ 0, then system is inconsistent and has no solution.
Case III: If |A| = 0 and (adj A) B = 0, then system may be either consistent or inconsistent according to as the system have either infinitely many solutions or no solutions

Class 12 Maths Notes
NCERT Solutions

Filed Under: CBSE Tagged With: cbse notes, Class 12 Maths Notes, class 12 notes, Determinants Class 12 Notes, ncert notes, Revision Notes

LearnCBSE.in Student Education Loan
  • Student Nutrition - How Does This Effect Studies
  • Words by Length
  • NEET MCQ
  • Factoring Calculator
  • Rational Numbers
  • CGPA Calculator
  • TOP Universities in India
  • TOP Engineering Colleges in India
  • TOP Pharmacy Colleges in India
  • Coding for Kids
  • Math Riddles for Kids with Answers
  • General Knowledge for Kids
  • General Knowledge
  • Scholarships for Students
  • NSP - National Scholarip Portal
  • Class 12 Maths NCERT Solutions
  • Class 11 Maths NCERT Solutions
  • NCERT Solutions for Class 10 Maths
  • NCERT Solutions for Class 9 Maths
  • NCERT Solutions for Class 8 Maths
  • NCERT Solutions for Class 7 Maths
  • NCERT Solutions for Class 6 Maths
  • NCERT Solutions for Class 6 Science
  • NCERT Solutions for Class 7 Science
  • NCERT Solutions for Class 8 Science
  • NCERT Solutions for Class 9 Science
  • NCERT Solutions for Class 10 Science
  • NCERT Solutions for Class 11 Physics
  • NCERT Solutions for Class 11 Chemistry
  • NCERT Solutions for Class 12 Physics
  • NCERT Solutions for Class 12 Chemistry
  • NCERT Solutions for Class 10 Science Chapter 1
  • NCERT Solutions for Class 10 Science Chapter 2
  • Metals and Nonmetals Class 10
  • carbon and its compounds class 10
  • Periodic Classification of Elements Class 10
  • Life Process Class 10
  • NCERT Solutions for Class 10 Science Chapter 7
  • NCERT Solutions for Class 10 Science Chapter 8
  • NCERT Solutions for Class 10 Science Chapter 9
  • NCERT Solutions for Class 10 Science Chapter 10
  • NCERT Solutions for Class 10 Science Chapter 11
  • NCERT Solutions for Class 10 Science Chapter 12
  • NCERT Solutions for Class 10 Science Chapter 13
  • NCERT Solutions for Class 10 Science Chapter 14
  • NCERT Solutions for Class 10 Science Chapter 15
  • NCERT Solutions for Class 10 Science Chapter 16

Free Resources

RD Sharma Class 12 Solutions RD Sharma Class 11
RD Sharma Class 10 RD Sharma Class 9
RD Sharma Class 8 RD Sharma Class 7
CBSE Previous Year Question Papers Class 12 CBSE Previous Year Question Papers Class 10
NCERT Books Maths Formulas
CBSE Sample Papers Vedic Maths
NCERT Library

NCERT Solutions

NCERT Solutions for Class 10
NCERT Solutions for Class 9
NCERT Solutions for Class 8
NCERT Solutions for Class 7
NCERT Solutions for Class 6
NCERT Solutions for Class 5
NCERT Solutions for Class 4
NCERT Solutions for Class 3
NCERT Solutions for Class 2
NCERT Solutions for Class 1

Quick Resources

English Grammar Hindi Grammar
Textbook Solutions Maths NCERT Solutions
Science NCERT Solutions Social Science NCERT Solutions
English Solutions Hindi NCERT Solutions
NCERT Exemplar Problems Engineering Entrance Exams
Like us on Facebook Follow us on Twitter
Watch Youtube Videos NCERT Solutions App