• NCERT Solutions
    • NCERT Library
  • RD Sharma
    • RD Sharma Class 12 Solutions
    • RD Sharma Class 11 Solutions Free PDF Download
    • RD Sharma Class 10 Solutions
    • RD Sharma Class 9 Solutions
    • RD Sharma Class 8 Solutions
    • RD Sharma Class 7 Solutions
    • RD Sharma Class 6 Solutions
  • Class 12
    • Class 12 Science
      • NCERT Solutions for Class 12 Maths
      • NCERT Solutions for Class 12 Physics
      • NCERT Solutions for Class 12 Chemistry
      • NCERT Solutions for Class 12 Biology
      • NCERT Solutions for Class 12 Economics
      • NCERT Solutions for Class 12 Computer Science (Python)
      • NCERT Solutions for Class 12 Computer Science (C++)
      • NCERT Solutions for Class 12 English
      • NCERT Solutions for Class 12 Hindi
    • Class 12 Commerce
      • NCERT Solutions for Class 12 Maths
      • NCERT Solutions for Class 12 Business Studies
      • NCERT Solutions for Class 12 Accountancy
      • NCERT Solutions for Class 12 Micro Economics
      • NCERT Solutions for Class 12 Macro Economics
      • NCERT Solutions for Class 12 Entrepreneurship
    • Class 12 Humanities
      • NCERT Solutions for Class 12 History
      • NCERT Solutions for Class 12 Political Science
      • NCERT Solutions for Class 12 Economics
      • NCERT Solutions for Class 12 Sociology
      • NCERT Solutions for Class 12 Psychology
  • Class 11
    • Class 11 Science
      • NCERT Solutions for Class 11 Maths
      • NCERT Solutions for Class 11 Physics
      • NCERT Solutions for Class 11 Chemistry
      • NCERT Solutions for Class 11 Biology
      • NCERT Solutions for Class 11 Economics
      • NCERT Solutions for Class 11 Computer Science (Python)
      • NCERT Solutions for Class 11 English
      • NCERT Solutions for Class 11 Hindi
    • Class 11 Commerce
      • NCERT Solutions for Class 11 Maths
      • NCERT Solutions for Class 11 Business Studies
      • NCERT Solutions for Class 11 Accountancy
      • NCERT Solutions for Class 11 Economics
      • NCERT Solutions for Class 11 Entrepreneurship
    • Class 11 Humanities
      • NCERT Solutions for Class 11 Psychology
      • NCERT Solutions for Class 11 Political Science
      • NCERT Solutions for Class 11 Economics
      • NCERT Solutions for Class 11 Indian Economic Development
  • Class 10
    • NCERT Solutions for Class 10 Maths
    • NCERT Solutions for Class 10 Science
    • NCERT Solutions for Class 10 Social Science
    • NCERT Solutions for Class 10 English
    • NCERT Solutions For Class 10 Hindi Sanchayan
    • NCERT Solutions For Class 10 Hindi Sparsh
    • NCERT Solutions For Class 10 Hindi Kshitiz
    • NCERT Solutions For Class 10 Hindi Kritika
    • NCERT Solutions for Class 10 Sanskrit
    • NCERT Solutions for Class 10 Foundation of Information Technology
  • Class 9
    • NCERT Solutions for Class 9 Maths
    • NCERT Solutions for Class 9 Science
    • NCERT Solutions for Class 9 Social Science
    • NCERT Solutions for Class 9 English
    • NCERT Solutions for Class 9 Hindi
    • NCERT Solutions for Class 9 Sanskrit
    • NCERT Solutions for Class 9 Foundation of IT
  • CBSE Sample Papers
    • Previous Year Question Papers
    • CBSE Topper Answer Sheet
    • CBSE Sample Papers for Class 12
    • CBSE Sample Papers for Class 11
    • CBSE Sample Papers for Class 10
    • Solved CBSE Sample Papers for Class 9 with Solutions 2024-2025
    • CBSE Sample Papers Class 8
    • CBSE Sample Papers Class 7
    • CBSE Sample Papers Class 6
  • Textbook Solutions
    • Lakhmir Singh
    • Lakhmir Singh Class 10 Physics
    • Lakhmir Singh Class 10 Chemistry
    • Lakhmir Singh Class 10 Biology
    • Lakhmir Singh Class 9 Physics
    • Lakhmir Singh Class 9 Chemistry
    • PS Verma and VK Agarwal Biology Class 9 Solutions
    • Lakhmir Singh Science Class 8 Solutions

Learn CBSE

NCERT Solutions for Class 6, 7, 8, 9, 10, 11 and 12

Determinant Definition, Properties, Formulas, Rules, Verification, Examples

April 19, 2019 by Veerendra

Determinant

1. The symbol \(\left| \begin{array}{ll}{a_{1}} & {b_{1}} \\ {a_{2}} & {b_{2}}\end{array}\right|\) is called the determinant of order two. Its value is given by : D = a1  b2   − a2  b1

2. The symbol \(\left| \begin{array}{lll}{\mathrm{a}_{1}} & {\mathrm{b}_{1}} & {\mathrm{c}_{1}} \\ {\mathrm{a}_{2}} & {\mathrm{b}_{2}} & {\mathrm{c}_{2}} \\ {\mathrm{a}_{3}} & {\mathrm{b}_{3}} & {\mathrm{c}_{3}}\end{array}\right|\)  s called the determinant of order three .
Its value can be found as:
\(\mathrm{D}=\mathrm{a}_{1} \left| \begin{array}{cc}{\mathrm{b}_{2}} & {\mathrm{c}_{2}} \\ {\mathrm{b}_{3}} & {\mathrm{c}_{3}}\end{array}\right|-\mathrm{a}_{2} \left| \begin{array}{cc}{\mathrm{b}_{1}} & {\mathrm{c}_{1}} \\ {\mathrm{b}_{3}} & {\mathrm{c}_{3}}\end{array}\right|+\mathrm{a}_{3} \left| \begin{array}{cc}{\mathrm{b}_{1}} & {\mathrm{c}_{1}} \\ {\mathrm{b}_{2}} & {\mathrm{c}_{2}}\end{array}\right|\)
OR
\(\mathrm{D}=\mathrm{a}_{1} \left| \begin{array}{cc}{\mathrm{b}_{2}} & {\mathrm{c}_{2}} \\ {\mathrm{b}_{3}} & {\mathrm{c}_{3}}\end{array}\right|-\mathrm{b}_{1} \left| \begin{array}{cc}{\mathrm{a}_{2}} & {\mathrm{c}_{2}} \\ {\mathrm{a}_{3}} & {\mathrm{c}_{3}}\end{array}\right|+\mathrm{c}_{1} \left| \begin{array}{ll}{\mathrm{a}_{2}} & {\mathrm{b}_{2}} \\ {\mathrm{a}_{3}} & {\mathrm{b}_{3}}\end{array}\right|\ldots\ldots \text {and so on}\).
In this manner we can expand a determinant in 6 ways using elements of ; R1 , R2 , R3 or C1 , C2 , C3.

3. Following examples of short hand writing large expressions are :
(i) The lines:
a1x + b1y + c1 = 0…….. (1 )
a2x + b2y + c2 = 0…….. (2)
a3x + b3y + c3 = 0…….. (3)
\(\text {are concurrent if}\left| \begin{array}{lll}{a_{1}} & {b_{1}} & {c_{1}} \\ {a_{2}} & {b_{2}} & {c_{2}} \\ {a_{3}} & {b_{3}} & {c_{3}}\end{array}\right|=0\)
Condition for the consistency of three simultaneous linear equations in 2 variables.
(ii) ax² + 2 hxy + by² + 2 gx + 2 fy + c = 0 represents a pair of straight lines if
\(a b c+2 f g h-a f^{2}-b g^{2}-c h^{2}=0=\left| \begin{array}{lll}{a} & {h} & {g} \\ {h} & {b} & {f} \\ {g} & {f} & {c}\end{array}\right|\)
(iii) Area of a triangle whose vertices are (xr, yr) ; r = 1 , 2 , 3 is :
\(\mathrm{D}=\frac{1}{2} \left| \begin{array}{lll}{\mathrm{x}_{1}} & {\mathrm{y}_{1}} & {1} \\ {\mathrm{x}_{2}} & {\mathrm{y}_{2}} & {1} \\ {\mathrm{x}_{3}} & {\mathrm{y}_{3}} & {1}\end{array}\right|\text {If D = 0 then the three points are collinear.}\)
\((iv) \text {Equation of a straight line passsing through}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \&\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right) \text { is } \left| \begin{array}{lll}{\mathrm{x}} & {\mathrm{y}} & {1} \\ {\mathrm{x}_{1}} & {\mathrm{y}_{1}} & {1} \\ {\mathrm{x}_{2}} & {\mathrm{y}_{2}} & {1}\end{array}\right|=0\)

4. Minors: The minor of a given element of a determinant is the determinant of the elements which remain after deleting the row & the column in which the given element stands For example,
\(\text {the minor of a 1 in (Key Concept 2) is}\left| \begin{array}{ll}{\mathrm{b}_{2}} & {\mathrm{c}_{2}} \\ {\mathrm{b}_{3}} & {\mathrm{c}_{3}}\end{array}\right| \& \text { the minor of } \mathrm{b}_{2} \text { is } \left| \begin{array}{ll}{\mathrm{a}_{1}} & {\mathrm{c}_{1}} \\ {\mathrm{a}_{3}} & {\mathrm{c}_{3}}\end{array}\right|\)
Hence a determinant of order two will have “4 minors” & a determinant of order three will have “9 minors” .

5. Cofactor: If Mij represents the minor of some typical element then the cofactor is defined as: Cij = (−1)i+j . Mij ; Where i & j denotes the row & column in which the particular element lies. Note that the value of a determinant of order three in terms of ‘Minor’ & ‘Cofactor’ can be written as : D = a11M11 − a12M12 + a13M13 OR D = a11C11 + a12C12 + a13C13 & so on …….

6. Properties Of Determinants:

  • Property 1: The value of a determinant remains unaltered , if the rows & columns are inter changed . e.g.
    \(\text {if D}=\left| \begin{array}{lll}{\mathrm{a}_{1}} & {\mathrm{b}_{1}} & {\mathrm{c}_{1}} \\ {\mathrm{a}_{2}} & {\mathrm{b}_{2}} & {\mathrm{c}_{2}} \\ {\mathrm{a}_{3}} & {\mathrm{b}_{3}} & {\mathrm{c}_{3}}\end{array}\right|=\left| \begin{array}{ccc}{\mathrm{a}_{1}} & {\mathrm{a}_{2}} & {\mathrm{a}_{3}} \\ {\mathrm{b}_{1}} & {\mathrm{b}_{2}} & {\mathrm{b}_{3}} \\ {\mathrm{c}_{1}} & {\mathrm{c}_{2}} & {\mathrm{c}_{3}}\end{array}\right|=\mathrm{D}^{\prime} \mathrm{D} \& \mathrm{D}^{\prime}\text { are transpose of each other.}\)
    If D′ = − D then it is Skew Symmetric determinant but D′ = D ⇒ 2 D = 0 ⇒ D = 0 ⇒ Skew symmetric determinant of third order has the value zero.
  • Property 2: If any two rows (or columns) of a determinant be interchanged, the value of determinant is changed in sign only. e.g.
    \(\text {Let D}=\left| \begin{array}{lll}{\mathrm{a}_{1}} & {\mathrm{b}_{1}} & {\mathrm{c}_{1}} \\ {\mathrm{a}_{2}} & {\mathrm{b}_{2}} & {\mathrm{c}_{2}} \\ {\mathrm{a}_{3}} & {\mathrm{b}_{3}} & {\mathrm{c}_{3}}\end{array}\right| \quad \& \quad \mathrm{D}^{\prime}=\left| \begin{array}{lll}{\mathrm{a}_{2}} & {\mathrm{b}_{2}} & {\mathrm{c}_{2}} \\ {a_{1}} & {\mathrm{b}_{1}} & {\mathrm{c}_{1}} \\ {\mathrm{a}_{3}} & {\mathrm{b}_{3}} & {\mathrm{c}_{3}}\end{array}\right|\)
    Then D′ = − D.
  • Property 3: If a determinant has any two rows (or columns) identical , then its value is zero . e. g.
    \(\text {Let D}=\left| \begin{array}{lll}{\mathrm{a}_{1}} & {\mathrm{b}_{1}} & {\mathrm{c}_{1}} \\ {\mathrm{a}_{1}} & {\mathrm{b}_{1}} & {\mathrm{c}_{1}} \\ {\mathrm{a}_{3}} & {\mathrm{b}_{3}} & {\mathrm{c}_{3}}\end{array}\right|\)
    then it can be verified that  D=0
  • Property 4: If all the elements of any row (or column) be multiplied by the same number , then the determinant is multiplied by that number.
    e.g.
    \(\text {Let D}=\left| \begin{array}{ccc}{\mathrm{a}_{1}} & {\mathrm{b}_{1}} & {\mathrm{c}_{1}} \\ {\mathrm{a}_{2}} & {\mathrm{b}_{2}} & {\mathrm{c}_{2}} \\ {\mathrm{a}_{3}} & {\mathrm{b}_{3}} & {\mathrm{c}_{3}}\end{array}\right| \text { and } \mathrm{D}^{\prime}=\left| \begin{array}{lll}{\mathrm{Ka}_{1}} & {\mathrm{Kb}_{1}} & {\mathrm{Kc}_{1}} \\ {\mathrm{a}_{2}} & {\mathrm{b}_{2}} & {\mathrm{c}_{2}} \\ {\mathrm{a}_{3}} & {\mathrm{b}_{3}} & {\mathrm{c}_{3}}\end{array}\right|\)
    Then D′ = KD
  • Property 5: If each element of any row (or column) can be expressed as a sum of two terms then the determinant can be expressed as the sum of two determinants . e.g.
    \(\left| \begin{array}{ccc}{a_{1}+x} & {b_{1}+y} & {c_{1}+z} \\ {a_{2}} & {b_{2}} & {c_{2}} \\ {a_{3}} & {b_{3}} & {c_{3}}\end{array}\right|=\left| \begin{array}{ccc}{a_{1}} & {b_{1}} & {c_{1}} \\ {a_{2}} & {b_{2}} & {c_{2}} \\ {a_{3}} & {b_{3}} & {c_{3}}\end{array}\right|+\left| \begin{array}{ccc}{x} & {y} & {z} \\ {a_{2}} & {b_{2}} & {c_{2}} \\ {a_{3}} & {b_{3}} & {c_{3}}\end{array}\right|\)
  • Property 6: The value of a determinant is not altered by adding to the elements of any row (or column) the same multiples of the corresponding elements of any other row (or column) .e.g.
    \(\text {Let D}=\left| \begin{array}{lll}{a_{1}} & {b_{1}} & {c_{1}} \\ {a_{2}} & {b_{2}} & {c_{2}} \\ {a_{3}} & {b_{3}} & {c_{3}}\end{array}\right| \text { and } D^{\prime}=\left| \begin{array}{ccc}{a_{1}+m a_{2}} & {b_{1}+m b_{2}} & {c_{1}+m c_{2}} \\ {a_{2}} & {b_{2}} & {c_{2}} \\ {a_{3}+n a_{1}} & {b_{3}+n b_{1}} & {c_{3}+n c_{1}}\end{array}\right|\)
    Then D′ = D.
    Note: that while applying this property Atleast One Row (Or Column)  must remain unchanged.
  • Property 7: If by putting x = a the value of a determinant vanishes then (x − a) is a factor of the determinant.

7.Multiplication Of Two Determinants:
\((i)\left| \begin{array}{ll}{a_{1}} & {b_{1}} \\ {a_{2}} & {b_{2}}\end{array}\right| \times \left| \begin{array}{ll}{1_{1}} & {m_{1}} \\ {l_{2}} & {m_{2}}\end{array}\right|=\left| \begin{array}{ll}{a_{1} l_{1}+b_{1} l_{2}} & {a_{1} m_{1}+b_{1} m_{2}} \\ {a_{2} l_{1}+b_{2} l_{2}} & {a_{2} m_{1}+b_{2} m_{2}}\end{array}\right|\)
Similarly two determinants of order three are multiplied.
\(\text {If D}=\left| \begin{array}{lll}{\mathrm{a}_{1}} & {\mathrm{b}_{1}} & {\mathrm{c}_{1}} \\ {\mathrm{a}_{2}} & {\mathrm{b}_{2}} & {\mathrm{c}_{2}} \\ {\mathrm{a}_{3}} & {\mathrm{b}_{3}} & {\mathrm{c}_{3}}\end{array}\right| \neq 0 \text { then }, \mathrm{D}^{2}=\left| \begin{array}{lll}{\mathrm{A}_{1}} & {\mathrm{B}_{1}} & {\mathrm{C}_{1}} \\ {\mathrm{A}_{2}} & {\mathrm{B}_{2}} & {\mathrm{C}_{2}} \\ {\mathrm{A}_{3}} & {\mathrm{B}_{3}} & {\mathrm{C}_{3}}\end{array}\right|\)
where Ai, Bi, Ci are cofactors
Proof: Consider
\(\left| \begin{array}{lll}{a_{1}} & {b_{1}} & {c_{1}} \\ {a_{2}} & {b_{2}} & {c_{2}} \\ {a_{3}} & {b_{3}} & {c_{3}}\end{array}\right| \times \left| \begin{array}{ccc}{A_{1}} & {A_{2}} & {A_{3}} \\ {B_{1}} & {B_{2}} & {B_{3}} \\ {C_{1}} & {C_{2}} & {C_{3}}\end{array}\right|=\left| \begin{array}{ccc}{D} & {0} & {0} \\ {0} & {D} & {0} \\ {0} & {0} & {D}\end{array}\right|\)
Note : a1A2 + b1B2 + c1C2 = 0 etc. therefore,
\(\mathbf{D} \times \left| \begin{array}{lll}{A_{1}} & {A_{2}} & {A_{3}} \\ {B_{1}} & {B_{2}} & {B_{3}} \\ {C_{1}} & {C_{2}} & {C_{3}}\end{array}\right|=D^{3}\Rightarrow \left| \begin{array}{lll}{\mathrm{A}_{1}} & {\mathrm{A}_{2}} & {\mathrm{A}_{3}} \\ {\mathrm{B}_{1}} & {\mathrm{B}_{2}} & {\mathrm{B}_{3}} \\ {\mathrm{C}_{1}} & {\mathrm{C}_{2}} & {\mathrm{C}_{3}}\end{array}\right|=\mathrm{D}^{2}\text {OR}\left| \begin{array}{ccc}{\mathrm{A}_{1}} & {\mathrm{B}_{1}} & {\mathrm{C}_{1}} \\ {\mathrm{A}_{2}} & {\mathrm{B}_{2}} & {\mathrm{C}_{2}} \\ {\mathrm{CA}_{3}} & {\mathrm{B}_{3}} & {\mathrm{C}_{3}}\end{array}\right|=\mathrm{D}^{2}\)

8. System Of Linear Equation (In Two Variables):
(i) Consistent Equations: Definite & unique solution. [ intersecting lines ]
(ii) Inconsistent Equation: No solution. [ Parallel line ]
(iii) Dependent equation: Infinite solutions. [ Identical lines ]
Let a1x + b1y + c1 = 0 & a2x + b2y + c2 = 0 then:
\(\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{\mathrm{b}_{1}}{\mathrm{b}_{2}} \neq \frac{\mathrm{c}_{1}}{\mathrm{c}_{2}} \Rightarrow\text { Given equations are inconsistent}\)
&
\(\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{\mathrm{b}_{1}}{\mathrm{b}_{2}}=\frac{\mathrm{c}_{1}}{\mathrm{c}_{2}} \Rightarrow \text {Given equations are dependent}\)

9. Cramer’ S Rule :[ Simultaneous Equations Involving Three Unknowns ]
Let ,a1x + b1y + c1z = d1 …(I) ; a2x + b2y + c2z = d2 …(II) ; a3x + b3y + c3z = d3 …(III)
Then,
\(\mathrm{x}=\frac{\mathrm{D}_{1}}{\mathrm{D}} \quad, \quad \mathrm{Y}=\frac{\mathrm{D}_{2}}{\mathrm{D}} \quad, \quad \mathrm{Z}=\frac{\mathrm{D}_{3}}{\mathrm{D}}\)
Where
\(D=\left| \begin{array}{lll}{a_{1}} & {b_{1}} & {c_{1}} \\ {a_{2}} & {b_{2}} & {c_{2}} \\ {a_{3}} & {b_{3}} & {c_{3}}\end{array}\right|;\)\(D_{1}=\left| \begin{array}{lll}{\mathrm{d}_{1}} & {\mathrm{b}_{1}} & {\mathrm{c}_{1}} \\ {\mathrm{d}_{2}} & {\mathrm{b}_{2}} & {\mathrm{c}_{2}} \\ {\mathrm{d}_{3}} & {\mathrm{b}_{3}} & {\mathrm{c}_{3}}\end{array}\right|;\)\(\mathrm{D}_{2}=\left| \begin{array}{lll}{\mathrm{a}_{1}} & {\mathrm{d}_{1}} & {\mathrm{c}_{1}} \\ {\mathrm{a}_{2}} & {\mathrm{d}_{2}} & {\mathrm{c}_{2}} \\ {\mathrm{a}_{3}} & {\mathrm{d}_{3}} & {\mathrm{c}_{3}}\end{array}\right|\)\(\& \mathrm{D}_{3}=\left| \begin{array}{lll}{\mathrm{a}_{1}} & {\mathrm{b}_{1}} & {\mathrm{d}_{1}} \\ {\mathrm{a}_{2}} & {\mathrm{b}_{2}} & {\mathrm{d}_{2}} \\ {\mathrm{a}_{3}} & {\mathrm{b}_{3}} & {\mathrm{d}_{3}}\end{array}\right|\)
Note: (a) If D ≠ 0 and alteast one of D1 , D2 , D3 ≠ 0 , then the given system of equations are
consistent and have unique non trivial solution .
(b) If D ≠ 0 & D1 = D2 = D3 = 0 , then the given system of equations are consistent and have trivial solution only
(c) If D = D1 = D2 = D3 = 0 , then the given system of equations are consistentand have infinite solutions . In case
\(\left.\begin{array}{l}{a_{1} x+b_{1} y+c_{1} z=d_{1}} \\ {a_{2} x+b_{2} y+c_{2} z=d_{2}} \\ {a_{3} x+b_{3} y+c_{3} z=d_{3}}\end{array}\right\}\)
represents these parallel planes then also D = D1 = D2 = D3 = 0 but the system is inconsistent.
(d) If D = 0 but atleast one of D1 , D2 , D3 is not zero then the equations are inco ns istent and have no solution .

10. If x , y , z are not all zero , the condition for a1x + b1y + c1z = 0 ; a2x + b2y + c2z = 0 & a3x + b3y + c3z = 0 to be consistent in x , y , z is that
\(\left| \begin{array}{lll}{a_{1}} & {b_{1}} & {c_{1}} \\ {a_{2}} & {b_{2}} & {c_{2}} \\ {a_{3}} & {b_{3}} & {c_{3}}\end{array}\right|=0.\)
Remember that if a given system of linear equations have Only Zero Solution for all its variables then the given equations are said to have Trivial Solution.

Filed Under: CBSE Tagged With: Determinant, determinant definition, determinant formula, determinant of a matrix, determinant of matrix, determinant properties, determinant rules, Determinants, determinants of matrices, matrix determinant, matrix inverse, Properties of Determinant, singular matrix, what is a determinant

LearnCBSE.in Student Education Loan
  • Student Nutrition - How Does This Effect Studies
  • Words by Length
  • NEET MCQ
  • Factoring Calculator
  • Rational Numbers
  • CGPA Calculator
  • TOP Universities in India
  • TOP Engineering Colleges in India
  • TOP Pharmacy Colleges in India
  • Coding for Kids
  • Math Riddles for Kids with Answers
  • General Knowledge for Kids
  • General Knowledge
  • Scholarships for Students
  • NSP - National Scholarip Portal
  • Class 12 Maths NCERT Solutions
  • Class 11 Maths NCERT Solutions
  • NCERT Solutions for Class 10 Maths
  • NCERT Solutions for Class 9 Maths
  • NCERT Solutions for Class 8 Maths
  • NCERT Solutions for Class 7 Maths
  • NCERT Solutions for Class 6 Maths
  • NCERT Solutions for Class 6 Science
  • NCERT Solutions for Class 7 Science
  • NCERT Solutions for Class 8 Science
  • NCERT Solutions for Class 9 Science
  • NCERT Solutions for Class 10 Science
  • NCERT Solutions for Class 11 Physics
  • NCERT Solutions for Class 11 Chemistry
  • NCERT Solutions for Class 12 Physics
  • NCERT Solutions for Class 12 Chemistry
  • NCERT Solutions for Class 10 Science Chapter 1
  • NCERT Solutions for Class 10 Science Chapter 2
  • Metals and Nonmetals Class 10
  • carbon and its compounds class 10
  • Periodic Classification of Elements Class 10
  • Life Process Class 10
  • NCERT Solutions for Class 10 Science Chapter 7
  • NCERT Solutions for Class 10 Science Chapter 8
  • NCERT Solutions for Class 10 Science Chapter 9
  • NCERT Solutions for Class 10 Science Chapter 10
  • NCERT Solutions for Class 10 Science Chapter 11
  • NCERT Solutions for Class 10 Science Chapter 12
  • NCERT Solutions for Class 10 Science Chapter 13
  • NCERT Solutions for Class 10 Science Chapter 14
  • NCERT Solutions for Class 10 Science Chapter 15
  • NCERT Solutions for Class 10 Science Chapter 16

Free Resources

RD Sharma Class 12 Solutions RD Sharma Class 11
RD Sharma Class 10 RD Sharma Class 9
RD Sharma Class 8 RD Sharma Class 7
CBSE Previous Year Question Papers Class 12 CBSE Previous Year Question Papers Class 10
NCERT Books Maths Formulas
CBSE Sample Papers Vedic Maths
NCERT Library

NCERT Solutions

NCERT Solutions for Class 10
NCERT Solutions for Class 9
NCERT Solutions for Class 8
NCERT Solutions for Class 7
NCERT Solutions for Class 6
NCERT Solutions for Class 5
NCERT Solutions for Class 4
NCERT Solutions for Class 3
NCERT Solutions for Class 2
NCERT Solutions for Class 1

Quick Resources

English Grammar Hindi Grammar
Textbook Solutions Maths NCERT Solutions
Science NCERT Solutions Social Science NCERT Solutions
English Solutions Hindi NCERT Solutions
NCERT Exemplar Problems Engineering Entrance Exams
Like us on Facebook Follow us on Twitter
Watch Youtube Videos NCERT Solutions App